The potential energy surfaces (PESs) of the neutral ethanol clusters is among the complex PESs of the neutral clusters. This is due to the fact that the ethanol monomer has three different isomers. In this work, we propose a systematic procedure to thoroughly explore the PES of the neutral ethanol hexamer that can be extended to other ethanol clusters. Thus, we started with a thorough exploration using the ABCluster code which uses the Lennard-Jones potential model. The resulting structures are further optimized at the APFD/6-31++g(d,p) level of theory {APFD refers to the initials of the first four authors in Austin et al. [J. Chem. Theory Comput. 8, 4989–5007 (2012)]}. Finally, 68 APFD structures have been fully re-optimized using the second order Møller-Plesset perturbation (MP2) method associated to the aug-cc-pVDZ basis set As a result, an isomer constituted of two trans ethanol monomers, two gauche+ ethanol monomers, and two gauche− ethanol monomers, is predicted to be the most stable structure using ABCluster. Full optimizations at the APFD/6-31++g(d,p) and MP2/aug-cc-pVDZ levels of theory confirm that this isomer is among the iso-energetic most stable structures of the ethanol hexamer. We found that most of the iso-energetic most stable structures are constituted of at least two different ethanol monomers. This highlights the importance of taking into account all the possible monomers in the exploration of the neutral ethanol clusters. In addition, we found that all the structures having their relative energies within 1.7 kcal mol−1 are cyclic structures. The results show that the most stable branched cyclic structures lies 1.7 kcal mol−1 above the most stable at the APFD/6-31++g(d,p) level of theory.

1.
W. O.
George
,
T.
Has
,
M. F.
Hossain
,
B. F.
Jones
, and
R.
Lewis
,
J. Chem. Soc.
94
,
2701
2708
(
1998
).
2.
L.
González
,
O.
, and
M.
Yáñez
,
J. Chem. Phys.
111
,
3855
3861
(
1999
).
3.
R. A.
Provencal
,
R. N.
Casaes
,
K.
Roth
,
J. B.
Paul
,
C. N.
Chapo
,
R. J.
Saykally
,
G. S.
Tschumper
, and
H. F.
Schaefer
,
J. Phys. Chem. A
104
,
1423
1429
(
2000
).
4.
K. M.
Murdoch
,
T. D.
Ferris
,
J. C.
Wright
, and
T. C.
Farrar
,
J. Chem. Phys.
116
,
5717
5724
(
2002
).
5.
V.
Dyczmons
,
J. Phys. Chem. A
108
,
2080
2086
(
2004
).
6.
C.
Emmeluth
,
V.
Dyczmons
,
T.
Kinzel
,
P.
Botschwina
,
M. A.
Suhm
, and
M.
Yáñez
,
Phys. Chem. Chem. Phys.
7
,
991
997
(
2005
).
7.
T. N.
Wassermann
and
M. A.
Suhm
,
J. Phys. Chem. A
114
,
8223
8233
(
2010
).
8.
P.
Golub
,
I.
Doroshenko
, and
V.
Pogorelov
,
Phys. Lett. A
378
,
1937
1944
(
2014
).
9.
A.
Vargas-Caamal
,
F.
Ortiz-Chi
,
D.
Moreno
,
A.
Restrepo
,
G.
Merino
, and
J. L.
Cabellos
,
Theor. Chem. Acc.
134
,
16
(
2015
).
10.
M. P.
Balanay
,
D. H.
Kim
, and
H.
Fan
,
J. Chem. Phys.
144
,
154302
(
2016
).
11.
S. M.
Mejía
,
J. F.
Espinal
, and
F.
Mondragón
,
J. Mol. Struct.
901
,
186
193
(
2009
).
12.
A. K.
Sum
and
S. I.
Sandler
,
J. Phys. Chem. A
104
,
1121
1129
(
2000
).
13.
A.
Austin
,
G. A.
Petersson
,
M. J.
Frisch
,
F. J.
Dobek
,
G.
Scalmani
, and
K.
Throssell
,
J. Chem. Theory Comput.
8
,
4989
5007
(
2012
).
14.
J.
Zhang
and
M.
Dolg
,
Phys. Chem. Chem. Phys.
17
,
24173
24181
(
2015
).
15.
J.
Zhang
and
M.
Dolg
,
Phys. Chem. Chem. Phys.
18
,
3003
3010
(
2016
).
16.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
,
J. Comput. Chem.
4
,
294
301
(
1983
).
17.
M.
Frisch
,
J.
Pople
, and
J.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
18.
V. A.
Rassolov
,
M. A.
Ratner
,
J. A.
Pople
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Comput. Chem.
22
,
976
984
(
2001
).
19.
M. J.
Frisch
 et al, gaussian 16, Revision A.03.,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
20.
P.
Borowski
,
T.
Janowski
, and
K.
Wolinski
,
Mol. Phys.
98
,
1331
1341
(
2000
).
21.
P.
Borowski
,
J.
Jaroniec
,
T.
Janowski
, and
K.
Woliński
,
Mol. Phys.
101
,
1413
1421
(
2003
).
22.
P.
Lalanne
,
J.
Andanson
,
J.-C.
Soetens
,
T.
Tassaing
,
Y.
Danten
, and
M.
Besnard
,
J. Phys. Chem. A
108
,
3902
3909
(
2004
).
23.
M.
Umer
,
W. A.
Kopp
, and
K.
Leonhard
,
J. Chem. Phys.
143
,
214306
(
2015
).
24.
D. L.
Jadhav
,
N.
Karthick
,
P.
Kannan
,
R.
Shanmugam
,
A.
Elangovan
, and
G.
Arivazhagan
,
THEOCHEM
1130
,
497
502
(
2017
).
25.
B.
Biswas
,
S.
Mondal
, and
P. C.
Singh
,
J. Phys. Chem.
121
,
1250
1260
(
2017
).
26.
F. C.
Hagemeister
,
C. J.
Gruenloh
, and
T. S.
Zwier
,
J. Phys. Chem. A
102
,
82
94
(
1998
).
27.
M. M.
Pires
and
V. F.
DeTuri
,
J. Chem. Theory Comput.
3
,
1073
1082
(
2007
).
28.
S. L.
Boyd
and
R. J.
Boyd
,
J. Chem. Theory Comput.
3
,
54
61
(
2007
).
29.
K.
Ohno
,
T.
Shimoaka
,
N.
Akai
, and
Y.
Katsumoto
,
J. Phys. Chem. A
112
,
7342
7348
(
2008
).
30.
J.
David
,
D.
Guerra
, and
A.
Restrepo
,
J. Phys. Chem. A
113
,
10167
10173
(
2009
).
31.
Z.
Huang
,
L.
Yu
, and
Y.
Dai
,
Struct. Chem.
21
,
565
572
(
2010
).
32.
H.-L.
Han
,
C.
Camacho
,
H. A.
Witek
, and
Y.-P.
Lee
,
J. Chem. Phys.
134
,
144309
(
2011
).
33.
M.
Umer
and
K.
Leonhard
,
J. Phys. Chem. A
117
,
1569
1582
(
2013
).
34.
S.
Kazachenko
,
S.
Bulusu
, and
A. J.
Thakkar
,
J. Chem. Phys.
138
,
224303
(
2013
).
35.
P.-J.
Hsu
,
K.-L.
Ho
,
S.-H.
Lin
, and
J.-L.
Kuo
,
Phys. Chem. Chem. Phys.
19
,
544
556
(
2017
).
36.
A.
Malloum
,
J. J.
Fifen
, and
J.
Conradie
,
Phys. Chem. Chem. Phys.
20
,
29184
29206
(
2018
).
37.
S.
Shanker
and
P.
Bandyopadhyay
,
J. Phys. Chem. A
115
,
11866
11875
(
2011
).
38.
J. P.
Furtado
,
A. P.
Rahalkar
,
S.
Shanker
,
P.
Bandyopadhyay
, and
S. R.
Gadre
,
J. Phys. Chem. Lett.
3
,
2253
2258
(
2012
).
39.
K.
Wang
,
W.
Li
, and
S.
Li
,
J. Chem. Theory Comput.
10
,
1546
1553
(
2014
).
40.
N.
Sahu
,
G.
Singh
,
A.
Nandi
, and
S. R.
Gadre
,
J. Phys. Chem. A
120
,
5706
5714
(
2016
).
41.
P. E.
Janeiro-Barral
and
M.
Mella
,
J. Phys. Chem. A
110
,
11244
11251
(
2006
).
42.
P. E.
Janeiro-Barral
,
M.
Mella
, and
E.
Curotto
,
J. Phys. Chem. A
112
,
2888
2898
(
2008
).
43.
A.
Malloum
,
J. J.
Fifen
,
Z.
Dhaouadi
,
E. S. G.
Nana
, and
N.-D.
Jaidane
,
Phys. Chem. Chem. Phys.
17
,
29226
29242
(
2015
).
44.
A.
Malloum
,
J. J.
Fifen
, and
J.
Conradie
,
J. Chem. Phys.
149
,
024304
(
2018
).
45.
Y.
Wang
,
V.
Babin
,
J. M.
Bowman
, and
F.
Paesani
,
J. Am. Chem. Soc.
134
,
11116
11119
(
2012
).

Supplementary Material

You do not currently have access to this content.