Locating the minimum free energy paths (MFEPs) between two conformational states is among the most important tasks of biomolecular simulations. For example, knowledge of the MFEP is critical for focusing the effort of unbiased simulations that are used for the construction of Markov state models to the biologically relevant regions of the system. Typically, existing path searching methods perform local sampling around the path nodes in a pre-selected collective variable (CV) space to allow a gradual downhill evolution of the path toward the MFEP. Despite the wide application of such a strategy, the gradual path evolution and the non-trivial a priori choice of CVs are also limiting its overall efficiency and automation. Here we demonstrate that non-local perpendicular sampling can be pursued to accelerate the search, provided that all nodes are reordered thereafter via a traveling-salesman scheme. Moreover, path-CVs can be computed on-the-fly and used as a coordinate system, minimizing the necessary prior knowledge about the system. Our traveling-salesman based automated path searching method achieves a 5-8 times speedup over the string method with swarms-of-trajectories for two peptide systems in vacuum and solution, making it a promising method for obtaining initial pathways when investigating functional conformational changes between a pair of structures.

1.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
,
Annu. Rev. Phys. Chem.
64
,
295
(
2013
).
2.
L. T.
Chong
,
A. S.
Saglam
, and
D. M.
Zuckerman
,
Curr. Opin. Struct. Biol.
43
,
88
(
2017
).
3.
P. G.
Bolhuis
 et al,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
4.
D.
Moroni
,
T. S.
van Erp
, and
P. G.
Bolhuis
,
Physica A
340
,
395
(
2004
).
5.
P. G.
Bolhuis
,
J. Chem. Phys.
129
,
114108
(
2008
).
6.
D. W. H.
Swenson
and
P. G.
Bolhuis
,
J. Chem. Phys.
141
,
044101
(
2014
).
7.
W.
Du
and
P. G.
Bolhuis
,
Biophys. J.
108
,
368
(
2015
).
8.
R.
Cabriolu
 et al,
J. Chem. Phys.
147
,
152722
(
2017
).
9.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
10.
R. B.
Best
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6732
(
2005
).
12.
R. D.
Malmstrom
 et al,
J. Chem. Theory Comput.
10
,
2648
(
2014
).
13.
G. R.
Bowman
,
X.
Huang
, and
V. S.
Pande
,
Methods
49
,
197
(
2009
).
14.
X.
Huang
 et al,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19765
(
2009
).
15.
B. W.
Zhang
 et al,
J. Phys. Chem. B
120
,
8289
(
2016
).
16.
F.
Morcos
 et al,
PLoS Comput. Biol.
6
,
e1001015
(
2010
).
17.
J. H.
Prinz
 et al,
J. Chem. Phys.
134
,
174105
(
2011
).
18.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
19.
J. D.
Chodera
 et al,
J. Chem. Phys.
126
,
155101
(
2007
).
20.
A. C.
Pan
and
B.
Roux
,
J. Chem. Phys.
129
,
064107
(
2008
).
21.
N. V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
22.
F.
Noe
 et al,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
23.
K. A.
Beauchamp
 et al,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17807
(
2012
).
24.
T. J.
Lane
 et al,
Curr. Opin. Struct. Biol.
23
,
58
(
2013
).
25.
V. A.
Voelz
 et al,
J. Am. Chem. Soc.
134
,
12565
(
2012
).
26.
G. R.
Bowman
,
V. A.
Voelz
, and
V. S.
Pande
,
Curr. Opin. Struct. Biol.
21
,
4
(
2011
).
27.
K. J.
Kohlhoff
 et al,
Nat. Chem.
6
,
15
(
2014
).
28.
L.-T.
Da
 et al,
Nat. Commun.
7
,
11244
(
2016
).
29.
H.
Jiang
 et al,
PLoS Comput. Biol.
11
,
e1004404
(
2015
).
30.
L.-T.
Da
 et al,
PLoS Comput. Biol.
11
,
e1004624
(
2015
).
31.
L. T.
Da
 et al,
PLoS Comput. Biol.
9
,
e1003020
(
2013
).
32.
L.-T.
Da
,
D.
Wang
, and
X.
Huang
,
J. Am. Chem. Soc.
134
,
2399
(
2012
).
33.
D. A.
Silva
 et al,
Proc. Natl. Acad. Sci. U. S. A.
111
,
7665
(
2014
).
34.
M.
Weber
,
A.
Bujotzek
, and
R.
Haag
,
J. Chem. Phys.
137
,
054111
(
2012
).
35.
N.
Plattner
 et al,
Nat. Chem.
9
,
1005
(
2017
).
36.
D. K.
Vanatta
 et al,
Nat. Commun.
6
,
7283
(
2015
).
37.
D.-A.
Silva
 et al,
PLoS Comput. Biol.
7
,
e1002054
(
2011
).
38.
R. D.
Malmstrom
 et al,
Nat. Commun.
6
,
7588
(
2015
).
39.
M.
Lawrenz
,
D.
Shukla
, and
V. S.
Pande
,
Sci. Rep.
5
,
7918
(
2015
).
40.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
10184
(
2011
).
41.
Y. M.
Rhee
and
V. S.
Pande
,
Biophys. J.
84
,
775
(
2003
).
42.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
43.
A. C.
Pan
,
D.
Sezer
, and
B.
Roux
,
J. Phys. Chem. B
112
,
3432
(
2008
).
44.
D. R.
Weiss
and
M.
Levitt
,
J. Mol. Biol.
385
,
665
(
2009
).
45.
J.
Schlitter
,
M.
Engels
, and
P.
Krüger
,
J. Mol. Graphics
12
,
84
(
1994
).
46.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
(
2001
).
47.
J.
Vreede
,
J.
Juraszek
, and
P. G.
Bolhuis
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
2397
(
2010
).
48.
J.
Lee
 et al,
Nat. Commun.
8
,
15443
(
2017
).
49.
W.
Wang
 et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1343
(
2017
).
50.
G.
Díaz Leines
and
B.
Ensing
,
Phys. Rev. Lett.
109
,
020601
(
2012
).
51.
C.
Chen
 et al,
J. Chem. Phys.
141
,
154109
(
2014
).
52.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
130
,
194103
(
2009
).
53.
L.
Maragliano
and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
446
,
182
(
2007
).
54.
L.
Maragliano
 et al,
J. Chem. Phys.
125
,
024106
(
2006
).
55.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Phys. Chem. B
109
,
6688
(
2005
).
56.
W.
Ren
 et al,
J. Chem. Phys.
123
,
134109
(
2005
).
57.
E.
Weinan
,
W. Q.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
58.
D.
Shukla
 et al,
Nat. Commun.
5
,
3397
(
2014
).
59.
W.
Gan
,
S.
Yang
, and
B.
Roux
,
Biophys. J.
97
,
L8
(
2009
).
60.
F.
Pontiggia
 et al,
Nat. Commun.
6
,
7284
(
2015
).
61.
Y.
Meng
 et al,
Proc. Natl. Acad. Sci. U. S. A.
113
,
9193
(
2016
).
62.
L.
Maragliano
,
B.
Roux
, and
E.
Vanden-Eijnden
,
J. Chem. Theory Comput.
10
,
524
(
2014
).
63.
D.
Branduardi
and
J. D.
Faraldo-Gómez
,
J. Chem. Theory Comput.
9
,
4140
(
2013
).
64.
V.
Ovchinnikov
,
M.
Karplus
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
085103
(
2011
).
65.
M.
Moradi
,
G.
Enkavi
, and
E.
Tajkhorshid
,
Nat. Commun.
6
,
8393
(
2015
).
66.
W.
Ma
and
K.
Schulten
,
J. Am. Chem. Soc.
137
,
3031
(
2015
).
67.
D. L.
Applegate
 et al,
The Traveling Salesman Problem: A Computational Study
(
Princeton University Press
,
2011
).
68.
D.
Branduardi
,
F. L.
Gervasio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
054103
(
2007
).
69.
A.
Tachibana
and
K.
Fukui
,
Theor. Chim. Acta
57
,
81
(
1980
).
70.
A.
Tachibana
and
K.
Fukui
,
Theor. Chim. Acta
51
,
275
(
1979
).
71.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
72.
A.
Berteotti
 et al,
J. Am. Chem. Soc.
131
,
244
(
2009
).
73.
N.
Saleh
 et al,
J. Chem. Inf. Model.
57
,
1210
(
2017
).
74.
E.
Formoso
,
V.
Limongelli
, and
M.
Parrinello
,
Sci. Rep.
5
,
8425
(
2015
).
75.
A. C.
Pan
 et al,
J. Chem. Theory Comput.
10
,
2860
(
2014
).
76.
77.
D.
Provasi
 et al,
PLoS Comput. Biol.
7
,
e1002193
(
2011
).
78.
C.
Domene
 et al,
J. Am. Chem. Soc.
130
,
9474
(
2008
).
79.
J. S.
Patel
 et al,
J. Chem. Theory Comput.
7
,
3368
(
2011
).
81.
G.
Saladino
 et al,
J. Chem. Theory Comput.
8
,
1165
(
2012
).
82.
P.
Tiwary
 et al,
Proc. Natl. Acad. Sci. U. S. A.
112
,
E386
(
2015
).
83.
S.
Decherchi
 et al,
Nat. Commun.
6
,
6155
(
2015
).
84.
R.
Casasnovas
 et al,
J. Am. Chem. Soc.
139
,
4780
(
2017
).
85.
M. A.
Morando
 et al,
Sci. Rep.
6
,
24439
(
2016
).
86.
A.
Cavalli
 et al,
Acc. Chem. Res.
48
,
277
(
2015
).
87.
V.
Limongelli
 et al,
Proc. Natl. Acad. Sci. U. S. A.
109
,
1467
(
2012
).
88.
J.
Pfaendtner
 et al,
Proc. Natl. Acad. Sci. U. S. A.
106
,
12723
(
2009
).
89.
T.
Huber
,
A. E.
Torda
, and
W. F.
Gunsteren
,
J. Comput.-Aided Mol. Des.
8
,
695
(
1994
).
90.
D.
Applegate
,
R.
Bixby
,
V.
Chvatal
, and
W.
Cook
,
The Traveling Salesman Problem: A Computational Study
(
Princeton University Press
,
2006
).
91.
J.
MacFadyen
and
I.
Andricioaei
,
J. Chem. Phys.
123
,
074107
(
2005
).
92.
J.
MacFadyen
,
J.
Wereszczynski
, and
I.
Andricioaei
,
J. Chem. Phys.
128
,
114112
(
2008
).
93.
M. J.
Abraham
 et al,
SoftwareX
1–2
,
19
(
2015
).
94.
G. A.
Tribello
 et al,
Comput. Phys. Commun.
185
,
604
(
2014
).
95.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
96.
J. C.
Phillips
 et al,
J. Comput. Chem.
26
,
1781
(
2005
).
97.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
98.
Y.
Duan
 et al,
J. Comput. Chem.
24
,
1999
(
2003
).
99.
J. F.
Dama
,
M.
Parrinello
, and
G. A.
Voth
,
Phys. Rev. Lett.
112
,
240602
(
2014
).
100.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
101.
I.
Marcotte
 et al,
Biophys. J.
86
,
1587
(
2004
).
102.
J.
Huang
and
A. D.
MacKerell
,
J. Comput. Chem.
34
,
2135
(
2013
).
103.
H. J. C.
Berendsen
 et al,
J. Chem. Phys.
81
,
3684
(
1984
).
104.
U.
Essmann
 et al,
J. Chem. Phys.
103
,
8577
(
1995
).
105.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
107.
M.
Bonomi
,
A.
Barducci
, and
M.
Parrinello
,
J. Comput. Chem.
30
,
1615
(
2009
).
108.
W.
Zheng
 et al,
J. Phys. Chem. B
112
,
6083
(
2008
).
109.
J. D.
Chodera
and
F.
Noe
,
Curr. Opin. Struct. Biol.
25
,
135
(
2014
).
110.
L.
Zhu
 et al,
Phys. Chem. Chem. Phys.
18
,
30228
(
2016
).
111.
H.
Wu
 et al,
Proc. Natl. Acad. Sci. U. S. A.
113
,
E3221
(
2016
).
112.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
113.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
130
,
194101
(
2009
).
114.
P.
Májek
and
R.
Elber
,
J. Chem. Theory Comput.
6
,
1805
(
2010
).
115.
E.
Vanden-Eijnden
 et al,
J. Chem. Phys.
129
,
174102
(
2008
).
116.
S.
Kirmizialtin
and
R.
Elber
,
J. Phys. Chem. A
115
,
6137
(
2011
).

Supplementary Material

You do not currently have access to this content.