In this paper, we have extended to the calculation of hyperfine coupling constants, the model recently proposed by some of the present authors [Giovannini et al., J. Chem. Theory Comput. 13, 4854–4870 (2017)] to include Pauli repulsion and dispersion effects in Quantum Mechanical/Molecular Mechanics (QM/MM) approaches. The peculiarity of the proposed approach stands in the fact that repulsion/dispersion contributions are explicitly introduced in the QM Hamiltonian. Therefore, such terms not only enter the evaluation of energetic properties but also propagate to molecular properties and spectra. A novel parametrization of the electrostatic fluctuating charge force field has been developed, thus allowing a quantitative reproduction of reference QM interaction energies. Such a parametrization has been then tested against the prediction of EPR parameters of prototypical nitroxide radicals in aqueous solutions.

1.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
2.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed.
48
,
1198
1229
(
2009
).
3.
J. R.
Cheeseman
,
M. S.
Shaik
,
P. L.
Popelier
, and
E. W.
Blanch
, “
Calculation of Raman optical activity spectra of methyl-β-d-glucose incorporating a full molecular dynamics simulation of hydration effects
,”
J. Am. Chem. Soc.
133
,
4991
4997
(
2011
).
4.
B.
Mennucci
, “
Modeling environment effects on spectroscopies through QM/classical models
,”
Phys. Chem. Chem. Phys.
15
,
6583
6594
(
2013
).
5.
K. H.
Hopmann
,
K.
Ruud
,
M.
Pecul
,
A.
Kudelski
,
M.
Dračínský
, and
P.
Bour
, “
Explicit versus implicit solvent modeling of Raman optical activity spectra
,”
J. Phys. Chem. B
115
,
4128
4137
(
2011
).
6.
C.
Cappelli
,
F.
Lipparini
,
J.
Bloino
, and
V.
Barone
, “
Towards an accurate description of anharmonic infrared spectra in solution within the polarizable continuum model: Reaction field, cavity field and nonequilibrium effects
,”
J. Chem. Phys.
135
,
104505
(
2011
).
7.
F.
Egidi
,
T.
Giovannini
,
M.
Piccardo
,
J.
Bloino
,
C.
Cappelli
, and
V.
Barone
, “
Stereoelectronic, vibrational, and environmental contributions to polarizabilities of large molecular systems: A feasible anharmonic protocol
,”
J. Chem. Theory Comput.
10
,
2456
2464
(
2014
).
8.
C.
Cappelli
, “
Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute-solvent systems
,”
Int. J. Quantum Chem.
116
,
1532
1542
(
2016
).
9.
E.
Boulanger
and
J. N.
Harvey
, “
QM/MM methods for free energies and photochemistry
,”
Curr. Opin. Struct. Biol.
49
,
72
76
(
2018
).
10.
P.
Lahiri
,
K. B.
Wiberg
,
P. H.
Vaccaro
,
M.
Caricato
, and
T. D.
Crawford
, “
Large solvation effect in the optical rotatory dispersion of norbornenone
,”
Angew. Chem.
126
,
1410
1413
(
2014
).
11.
D.
Loco
,
S.
Jurinovich
,
L.
Cupellini
,
M. F.
Menger
, and
B.
Mennucci
, “
The modeling of the absorption lineshape for embedded molecules through a polarizable QM/MM approach
,”
Photochem. Photobiol. Sci.
17
,
552
560
(
2018
).
12.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
249
(
1976
).
13.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
, “
A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations
,”
J. Comput. Chem.
11
,
700
733
(
1990
).
14.
J.
Gao
, “
Hybrid quantum and molecular mechanical simulations: An alternative avenue to solvent effects in organic chemistry
,”
Acc. Chem. Res.
29
,
298
305
(
1996
).
15.
R. A.
Friesner
and
V.
Guallar
, “
Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis
,”
Annu. Rev. Phys. Chem.
56
,
389
427
(
2005
).
16.
H.
Lin
and
D. G.
Truhlar
, “
QM/MM: What have we learned, where are we, and where do we go from here?
,”
Theor. Chem. Acc.
117
,
185
199
(
2007
).
17.
A.
Monari
,
J.-L.
Rivail
, and
X.
Assfeld
, “
Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations
,”
Acc. Chem. Res.
46
,
596
603
(
2012
).
18.
A.
Monari
,
T.
Very
,
J.-L.
Rivail
, and
X.
Assfeld
, “
A QM/MM study on the spinach plastocyanin: Redox properties and absorption spectra
,”
Comput. Theor. Chem.
990
,
119
125
(
2012
).
19.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
S. P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D.
Garmer
,
H.
Basch
, and
D.
Cohen
, “
An effective fragment method for modeling solvent effects in quantum mechanical calculations
,”
J. Chem. Phys.
105
,
1968
1986
(
1996
).
20.
V.
Kairys
and
J. H.
Jensen
, “
QM/MM boundaries across covalent bonds: A frozen localized molecular orbital-based approach for the effective fragment potential method
,”
J. Phys. Chem. A
104
,
6656
6665
(
2000
).
21.
Y.
Mao
,
O.
Demerdash
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Assessing ion–water interactions in the amoeba force field using energy decomposition analysis of electronic structure calculations
,”
J. Chem. Theory Comput.
12
,
5422
5437
(
2016
).
22.
D.
Loco
,
É.
Polack
,
S.
Caprasecca
,
L.
Lagardere
,
F.
Lipparini
,
J.-P.
Piquemal
, and
B.
Mennucci
, “
A QM/MM approach using the amoeba polarizable embedding: From ground state energies to electronic excitations
,”
J. Chem. Theory Comput.
12
,
3654
3661
(
2016
).
23.
D.
Loco
and
L.
Cupellini
, “
Modeling the absorption lineshape of embedded systems from molecular dynamics: A tutorial review
,”
Int. J. Quantum Chem.
119
,
e25726
(
2019
).
24.
B. T.
Thole
, “
Molecular polarizabilities calculated with a modified dipole interaction
,”
Chem. Phys.
59
,
341
350
(
1981
).
25.
A. H.
Steindal
,
K.
Ruud
,
L.
Frediani
,
K.
Aidas
, and
J.
Kongsted
, “
Excitation energies in solution: The fully polarizable QM/MM/PCM method
,”
J. Phys. Chem. B
115
,
3027
3037
(
2011
).
26.
S.
Jurinovich
,
C.
Curutchet
, and
B.
Mennucci
, “
The Fenna–Matthews–Olson protein revisited: A fully polarizable (TD) DFT/MM description
,”
ChemPhysChem
15
,
3194
3204
(
2014
).
27.
E.
Boulanger
and
W.
Thiel
, “
Solvent boundary potentials for hybrid QM/MM computations using classical drude oscillators: A fully polarizable model
,”
J. Chem. Theory Comput.
8
,
4527
4538
(
2012
).
28.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
, “
Dynamical fluctuating charge force fields: Application to liquid water
,”
J. Chem. Phys.
101
,
6141
6156
(
1994
).
29.
S. W.
Rick
and
B. J.
Berne
, “
Dynamical fluctuating charge force fields: The aqueous solvation of amides
,”
J. Am. Chem. Soc.
118
,
672
679
(
1996
).
30.
T.
Giovannini
,
M.
Olszòwka
,
F.
Egidi
,
J. R.
Cheeseman
,
G.
Scalmani
, and
C.
Cappelli
, “
Polarizable embedding approach for the analytical calculation of Raman and Raman optical activity spectra of solvated systems
,”
J. Chem. Theory Comput.
13
,
4421
4435
(
2017
).
31.
F.
Lipparini
,
F.
Egidi
,
C.
Cappelli
, and
V.
Barone
, “
The optical rotation of methyloxirane in aqueous solution: A never ending story?
,”
J. Chem. Theory Comput.
9
,
1880
1884
(
2013
).
32.
D.
Loco
,
F.
Buda
,
J.
Lugtenburg
, and
B.
Mennucci
, “
The dynamic origin of color tuning in proteins revealed by a carotenoid pigment
,”
J. Phys. Chem. Lett.
9
,
2404
2410
(
2018
).
33.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
,
461
(
1931
).
34.
E.
Boulanger
,
L.
Huang
,
C.
Rupakheti
,
A. D.
MacKerell
, Jr.
, and
B.
Roux
, “
Optimized Lennard-Jones parameters for druglike small molecules
,”
J. Chem. Theory Comput.
14
,
3121
3131
(
2018
).
35.
M. S.
Gordon
,
Q. A.
Smith
,
P.
Xu
, and
L. V.
Slipchenko
, “
Accurate first principles model potentials for intermolecular interactions
,”
Annu. Rev. Phys. Chem.
64
,
553
578
(
2013
).
36.
H.
Gokcan
,
E. G.
Kratz
,
T. A.
Darden
,
J.-P.
Piquemal
, and
G. A.
Cisneros
, “
QM/MM simulations with the Gaussian electrostatic model, a density-based polarizable potential
,”
J. Phys. Chem. Lett.
9
,
3062
3067
(
2018
).
37.
M. S.
Gordon
,
L.
Slipchenko
,
H.
Li
, and
J. H.
Jensen
, “
The effective fragment potential: A general method for predicting intermolecular interactions
,”
Annu. Rep. Comput. Chem.
3
,
177
193
(
2007
).
38.
M. S.
Gordon
,
M. A.
Freitag
,
P.
Bandyopadhyay
,
J. H.
Jensen
,
V.
Kairys
, and
W. J.
Stevens
, “
The effective fragment potential method: A QM-based MM approach to modeling environmental effects in chemistry
,”
J. Phys. Chem. A
105
,
293
307
(
2001
).
39.
I.
Adamovic
and
M. S.
Gordon
, “
Dynamic polarizability, dispersion coefficient C6 and dispersion energy in the effective fragment potential method
,”
Mol. Phys.
103
,
379
387
(
2005
).
40.
L. V.
Slipchenko
, “
Effective fragment potential method
,” in
Many-Body Effects and Electrostatics in Biomolecules
(
Pan Stanford
,
2016
), pp.
147
187
.
41.
J. M. H.
Olsen
,
C.
Steinmann
,
K.
Ruud
, and
J.
Kongsted
, “
Polarizable density embedding: A new QM/QM/MM-based computational strategy
,”
J. Phys. Chem. A
119
,
5344
5355
(
2015
).
42.
P.
Reinholdt
,
J.
Kongsted
, and
J. M. H.
Olsen
, “
Polarizable density embedding: A solution to the electron spill-out problem in multiscale modeling
,”
J. Phys. Chem. Lett.
8
,
5949
5958
(
2017
).
43.
T.
Giovannini
,
P.
Lafiosca
, and
C.
Cappelli
, “
A general route to include Pauli repulsion and quantum dispersion effects in QM/MM approaches
,”
J. Chem. Theory Comput.
13
,
4854
4870
(
2017
).
44.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
45.
A.
Tkatchenko
,
L.
Romaner
,
O. T.
Hofmann
,
E.
Zojer
,
C.
Ambrosch-Draxl
, and
M.
Scheffler
, “
Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces
,”
MRS Bull.
35
,
435
442
(
2010
).
46.
A.
Tkatchenko
,
R. A.
DiStasio
, Jr.
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
47.
J.
Hermann
,
R. A.
DiStasio
, and
A.
Tkatchenko
, “
First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications
,”
Chem. Rev.
117
,
4714
4758
(
2017
).
48.
C.
Curutchet
,
L.
Cupellini
,
J.
Kongsted
,
S.
Corni
,
L.
Frediani
,
A. H.
Steindal
,
C. A.
Guido
,
G.
Scalmani
, and
B.
Mennucci
, “
Density-dependent formulation of dispersion–repulsion interactions in hybrid multiscale quantum/molecular mechanics (QM/MM) models
,”
J. Chem. Theory Comput.
14
,
1671
1681
(
2018
).
49.
G. A.
Cisneros
,
J.-P.
Piquemal
, and
T. A.
Darden
, “
Intermolecular electrostatic energies using density fitting
,”
J. Chem. Phys.
123
,
044109
(
2005
).
50.
J.-P.
Piquemal
,
G. A.
Cisneros
,
P.
Reinhardt
,
N.
Gresh
, and
T. A.
Darden
, “
Towards a force field based on density fitting
,”
J. Chem. Phys.
124
,
104101
(
2006
).
51.
G. A.
Cisneros
,
J.-P.
Piquemal
, and
T. A.
Darden
, “
Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods
,”
J. Chem. Phys.
125
,
184101
(
2006
).
52.
M.
Pavone
,
P.
Cimino
,
F.
De Angelis
, and
V.
Barone
, “
Interplay of stereoelectronic and environmental effects in tuning the structural and magnetic properties of a prototypical spin probe: Further insights from a first principle dynamical approach
,”
J. Am. Chem. Soc.
128
,
4338
4347
(
2006
).
53.
V.
Barone
, “
Electronic, vibrational and environmental effects on the hyperfine coupling constants of nitroxide radicals. H2NO as a case study
,”
Chem. Phys. Lett.
262
,
201
206
(
1996
).
54.
R.
Improta
and
V.
Barone
, “
Interplay of electronic, environmental, and vibrational effects in determining the hyperfine coupling constants of organic free radicals
,”
Chem. Rev.
104
,
1231
1254
(
2004
).
55.
M.
Pavone
,
P.
Cimino
,
O.
Crescenzi
,
A.
Sillanpaeae
, and
V.
Barone
, “
Interplay of intrinsic, environmental, and dynamic effects in tuning the EPR parameters of nitroxides: Further insights from an integrated computational approach
,”
J. Phys. Chem. B
111
,
8928
8939
(
2007
).
56.
V.
Barone
,
P.
Cimino
,
O.
Crescenzi
, and
M.
Pavone
, “
Ab initio computation of spectroscopic parameters as a tool for the structural elucidation of organic systems
,”
J. Mol. Struct.: THEOCHEM
811
,
323
335
(
2007
).
57.
M.
Pavone
,
A.
Sillanpää
,
P.
Cimino
,
O.
Crescenzi
, and
V.
Barone
, “
Evidence of variable H-bond network for nitroxide radicals in protic solvents
,”
J. Phys. Chem. B
110
,
16189
16192
(
2006
).
58.
V.
Barone
,
M.
Brustolon
,
P.
Cimino
,
A.
Polimeno
,
M.
Zerbetto
, and
A.
Zoleo
, “
Development and validation of an integrated computational approach for the modeling of cw-ESR spectra of free radicals in solution: p-(methylthio) phenyl nitronylnitroxide in toluene as a case study
,”
J. Am. Chem. Soc.
128
,
15865
15873
(
2006
).
59.
E.
Stendardo
,
A.
Pedone
,
P.
Cimino
,
M. C.
Menziani
,
O.
Crescenzi
, and
V.
Barone
, “
Extension of the amber force-field for the study of large nitroxides in condensed phases: An ab initio parameterization
,”
Phys. Chem. Chem. Phys.
12
,
11697
11709
(
2010
).
60.
V.
Barone
,
P.
Cimino
, and
A.
Pedone
, “
An integrated computational protocol for the accurate prediction of EPR and PNMR parameters of aminoxyl radicals in solution
,”
Magn. Reson. Chem.
48
,
S11
S22
(
2010
).
61.
J. C.
Schöneboom
,
F.
Neese
, and
W.
Thiel
, “
Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: A QM/MM study of its EPR and Mössbauer parameters
,”
J. Am. Chem. Soc.
127
,
5840
5853
(
2005
).
62.
S.
Sinnecker
and
F.
Neese
, “
QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study
,”
J. Comput. Chem.
27
,
1463
1475
(
2006
).
63.
S.
Moon
,
S.
Patchkovskii
, and
D. R.
Salahub
, “
QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins
,”
J. Mol. Struct.: THEOCHEM
632
,
287
295
(
2003
).
64.
H. M.
Senn
and
W.
Thiel
, “
QM/MM studies of enzymes
,”
Curr. Opin. Chem. Biol.
11
,
182
187
(
2007
).
65.
V.
Barone
,
A.
Bencini
,
M.
Cossi
,
A. D.
Matteo
,
M.
Mattesini
, and
F.
Totti
, “
Assessment of a combined QM/MM approach for the study of large nitroxide systems in vacuo and in condensed phases
,”
J. Am. Chem. Soc.
120
,
7069
7078
(
1998
).
66.
L. J.
Berliner
,
Spin Labeling: Theory and Applications
(
Academic
,
New York
,
1976
).
67.
N.
Kocherginsky
and
H. M.
Swartz
,
Nitroxide Spin Labels: Reactions in Biology and Chemistry
(
CRC Press
,
New York
,
1995
).
68.
A. H.
Buchaklian
and
C. S.
Klug
, “
Characterization of the walker a motif of MsbA using site-directed spin labeling electron paramagnetic resonance spectroscopy
,”
Biochemistry
44
,
5503
5509
(
2005
).
69.
M.
Engström
,
O.
Vahtras
, and
H.
Ågren
, “
MCSCF and DFT calculations of EPR parameters of sulfur centered radicals
,”
Chem. Phys. Lett.
328
,
483
491
(
2000
).
70.
Z.
Rinkevicius
,
B.
Frecus
,
N. A.
Murugan
,
O.
Vahtras
,
J.
Kongsted
, and
H.
Ågren
, “
Encapsulation influence on EPR parameters of spin-labels: 2, 2, 6, 6-tetramethyl-4-methoxypiperidine-1-oxyl in cucurbit[8]uril
,”
J. Chem. Theory Comput.
8
,
257
263
(
2011
).
71.
K. J.
de Almeida
,
Z.
Rinkevicius
,
H. W.
Hugosson
,
A. C.
Ferreira
, and
H.
Ågren
, “
Modeling of EPR parameters of copper (ii) aqua complexes
,”
Chem. Phys.
332
,
176
187
(
2007
).
72.
C.
Di Valentin
,
G.
Pacchioni
,
A.
Selloni
,
S.
Livraghi
, and
E.
Giamello
, “
Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations
,”
J. Phys. Chem. B
109
,
11414
11419
(
2005
).
73.
M.
Anpo
,
Y.
Shioya
,
H.
Yamashita
,
E.
Giamello
,
C.
Morterra
,
M.
Che
,
H. H.
Patterson
,
S.
Webber
, and
S.
Ouellette
, “
Preparation and characterization of the Cu+/zsm-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations
,”
J. Phys. Chem.
98
,
5744
5750
(
1994
).
74.
J.-L.
Clément
,
N.
Ferré
,
D.
Siri
,
H.
Karoui
,
A.
Rockenbauer
, and
P.
Tordo
, “
Assignment of the EPR spectrum of 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct
,”
J. Org. Chem.
70
,
1198
1203
(
2005
).
75.
E.
Giner
,
L.
Tenti
,
C.
Angeli
, and
N.
Ferré
, “
Computation of the isotropic hyperfine coupling constant: Efficiency and insights from a new approach based on wave function theory
,”
J. Chem. Theory Comput.
13
,
475
487
(
2017
).
76.
C.
Amovilli
and
R.
McWeeny
, “
A matrix partitioning approach to the calculation of intermolecular potentials. General theory and some examples
,”
Chem. Phys.
140
,
343
361
(
1990
).
77.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
(
Academic Press
,
London
,
1992
).
78.
F.
Lipparini
and
V.
Barone
, “
Polarizable force fields and polarizable continuum model: A fluctuating charges/PCM approach. 1. Theory and implementation
,”
J. Chem. Theory Comput.
7
,
3711
3724
(
2011
).
79.
F.
Lipparini
,
C.
Cappelli
,
G.
Scalmani
,
N.
De Mitri
, and
V.
Barone
, “
Analytical first and second derivatives for a fully polarizable QM/classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4270
4278
(
2012
).
80.
T.
Giovannini
,
M.
Olszowka
, and
C.
Cappelli
, “
Effective fully polarizable QM/MM approach to model vibrational circular dichroism spectra of systems in aqueous solution
,”
J. Chem. Theory Comput.
12
,
5483
5492
(
2016
).
81.
T.
Giovannini
,
G.
Del Frate
,
P.
Lafiosca
, and
C.
Cappelli
, “
Effective computational route towards vibrational optical activity spectra of chiral molecules in aqueous solution
,”
Phys. Chem. Chem. Phys.
20
,
9181
9197
(
2018
).
82.
T.
Giovannini
,
M.
Macchiagodena
,
M.
Ambrosetti
,
A.
Puglisi
,
P.
Lafiosca
,
G.
Lo Gerfo
,
F.
Egidi
, and
C.
Cappelli
, “
Simulating vertical excitation energies of solvated dyes: From continuum to polarizable discrete modeling
,”
Int. J. Quantum Chem.
119
,
e25684
(
2019
).
83.
F.
Lipparini
,
C.
Cappelli
, and
V.
Barone
, “
Linear response theory and electronic transition energies for a fully polarizable QM/classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4153
4165
(
2012
).
84.
T.
Giovannini
,
M.
Ambrosetti
, and
C.
Cappelli
, “
A polarizable embedding approach to second harmonic generation (SHG) of molecular systems in aqueous solutions
,”
Theor. Chem. Acc.
137
,
74
(
2018
).
85.
C.
Amovilli
and
B.
Mennucci
, “
Self-consistent-field calculation of Pauli repulsion and dispersion contributions to the solvation free energy in the polarizable continuum model
,”
J. Phys. Chem. B
101
,
1051
1057
(
1997
).
86.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chem. Acc.
44
,
129
138
(
1977
).
87.
I.
Harczuk
,
B.
Nagy
,
F.
Jensen
,
O.
Vahtras
, and
H.
Ågren
, “
Local decomposition of imaginary polarizabilities and dispersion coefficients
,”
Phys. Chem. Chem. Phys.
19
,
20241
20250
(
2017
).
88.
S.
Grimme
, “
Density functional theory with London dispersion corrections
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci
1
,
211
228
(
2011
).
89.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
90.
O. L.
Malkina
,
J.
Vaara
,
B.
Schimmelpfennig
,
M.
Munzarová
,
V. G.
Malkin
, and
M.
Kaupp
, “
Density functional calculations of electronic g-tensors using spin-orbit pseudopotentials and mean-field all-electron spin-orbit operators
,”
J. Am. Chem. Soc.
122
,
9206
9218
(
2000
).
91.
M.
Kaupp
,
C.
Remenyi
,
J.
Vaara
,
O. L.
Malkina
, and
V. G.
Malkin
, “
Density functional calculations of electronic g-tensors for semiquinone radical anions. The role of hydrogen bonding and substituent effects
,”
J. Am. Chem. Soc.
124
,
2709
2722
(
2002
).
92.
V.
Barone
and
P.
Cimino
, “
Accurate and feasible computations of structural and magnetic properties of large free radicals: The PBE0/N07D model
,”
Chem. Phys. Lett.
454
,
139
143
(
2008
).
93.
V.
Barone
,
P.
Cimino
, and
E.
Stendardo
, “
Development and validation of the B3LYP/N07D computational model for structural parameter and magnetic tensors of large free radicals
,”
J. Chem. Theory Comput.
4
,
751
764
(
2008
).
94.
V.
Barone
, “
Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods
,” in
Recent Advances in Density Functional Methods: Part I
(
World Scientific
,
1995
), pp.
287
334
.
95.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
96.
P.
Mark
and
L.
Nilsson
, “
Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K
,”
J. Phys. Chem. A
105
,
9954
9960
(
2001
).
97.
I.
Carnimeo
,
C.
Cappelli
, and
V.
Barone
, “
Analytical gradients for MP2, double hybrid functionals, and TD-DFT with polarizable embedding described by fluctuating charges
,”
J. Comput. Chem.
36
,
2271
2290
(
2015
).
98.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
, “
Comparison of multiple amber force fields and development of improved protein backbone parameters
,”
Proteins
65
,
712
725
(
2006
).
99.
D. A.
Case
,
T. E.
Cheatham
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
, “
The amber biomolecular simulation programs
,”
J. Comput. Chem.
26
,
1668
1688
(
2005
).
100.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
, “
Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
101.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
102.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision A.03,
Gaussian Inc.
,
Wallingford, CT
,
2016
.
103.
J. F.
Keana
,
T. D.
Lee
, and
E. M.
Bernard
, “
Side-chain substituted 2, 2, 5, 5-tetramethylpyrrolidine-N-oxyl (proxyl) nitroxides. A new series of lipid spin labels showing improved properties for the study of biological membranes
,”
J. Am. Chem. Soc.
98
,
3052
3053
(
1976
).
104.
A.
Rockenbauer
,
L.
Korecz
, and
K.
Hideg
, “
Ring pseudorotation in pyrrolidine N-oxyl radicals: An analysis of 13C-hyperfine structure of EPR spectra
,”
J. Chem. Soc., Perkin Trans. 2
0
(
11
),
2149
2156
(
1993
).
105.
C.
Puzzarini
and
V.
Barone
, “
Diving for accurate structures in the ocean of molecular systems with the help of spectroscopy and quantum chemistry
,”
Acc. Chem. Res.
51
,
548
556
(
2018
).
106.
K.
Szalewicz
, “
Symmetry-adapted perturbation theory of intermolecular forces
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
254
272
(
2012
).
107.
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Wavefunction methods for noncovalent interactions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci
2
,
304
326
(
2012
).
108.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
, “
Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies
,”
J. Chem. Phys.
140
,
094106
(
2014
).
109.
S. F.
Boys
and
F. d.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).

Supplementary Material

You do not currently have access to this content.