Markov state models have become popular in the computational biochemistry and biophysics communities as a technique for identifying stationary and kinetic information of protein dynamics from molecular dynamics simulation data. In this paper, we extend the applicability of automated Markov state modeling to simulation data of molecular self-assembly and aggregation by constructing collective coordinates from molecular descriptors that are invariant to permutations of molecular indexing. Understanding molecular self-assembly is of critical importance if we want to deepen our understanding of neurodegenerative diseases where the aggregation of misfolded or disordered proteins is thought to be the main culprit. As a proof of principle, we demonstrate our Markov state model technique on simulations of the KFFE peptide, a subsequence of Alzheimer’s amyloid-β peptide and one of the smallest peptides known to aggregate into amyloid fibrils in vitro. We investigate the different stages of aggregation up to tetramerization and show that the Markov state models clearly map out the different aggregation pathways. Of note is that disordered and β-sheet oligomers do not interconvert, leading to separate pathways for their formation. This suggests that amyloid aggregation of KFFE occurs via ordered aggregates from the very beginning. The code developed here is freely available as a Jupyter notebook called TICAgg, which can be used for the automated analysis of any self-assembling molecular system, protein, or otherwise.

1.
R. O.
Dror
,
R. M.
Dirks
,
J. P.
Grossman
,
H.
Xu
, and
D. E.
Shaw
,
Annu. Rev. Biophys.
41
,
429
(
2012
).
2.
J.-H.
Prinz
,
B.
Keller
, and
F.
Noé
,
Phys. Chem. Chem. Phys.
13
,
16912
(
2011
).
3.
B. G.
Keller
,
A.
Kobitski
,
A.
Jäschke
,
G. U.
Nienhaus
, and
F.
Noé
,
J. Am. Chem. Soc.
136
,
4534
(
2014
).
4.
S.
Olsson
,
H.
Wu
,
F.
Paul
,
C.
Clementi
, and
F.
Noé
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
8265
(
2017
).
5.
S.
Olsson
and
F.
Noé
,
J. Am. Chem. Soc.
139
,
200
(
2017
).
6.
B.
Trendelkamp-Schroer
,
H.
Wu
,
F.
Paul
, and
F.
Noé
,
J. Chem. Phys.
143
,
174101
(
2015
).
7.
N.
Djurdjevac
,
M.
Sarich
, and
C.
Schütte
,
Multiscale Model. Simul.
10
,
61
(
2012
).
8.
G. R.
Bowman
and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
10890
(
2010
).
9.
A.
Sirur
,
D.
De Sancho
, and
R. B.
Best
,
J. Chem. Phys.
144
,
075101
(
2016
).
10.
G. R.
Bowman
,
D. L.
Ensign
, and
V. S.
Pande
,
J. Chem. Theory Comput.
6
,
787
(
2010
).
11.
F.
Noe
,
C.
Schutte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
12.
B.
Zagrovic
,
C. D.
Snow
,
M. R.
Shirts
, and
V. S.
Pande
,
J. Mol. Biol.
323
,
927
(
2002
).
13.
K. A.
Beauchamp
,
G. R.
Bowman
,
T. J.
Lane
,
L.
Maibaum
,
I. S.
Haque
, and
V. S.
Pande
,
J. Chem. Theory Comput.
7
,
3412
(
2011
).
14.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
15.
Q.
Liao
,
Y.
Kulkarni
,
U.
Sengupta
,
D.
Petrović
,
A. J.
Mulholland
,
M. W.
van der Kamp
,
B.
Strodel
, and
S. C. L.
Kamerlin
,
J. Am. Chem. Soc.
140
,
15889
(
2018
).
16.
U.
Sengupta
and
B.
Strodel
,
Philos. Trans. R. Soc., B
373
,
20170178
(
2018
).
17.
N.
Plattner
and
F.
Noé
,
Nat. Commun.
6
,
7653
(
2015
).
18.
N.
Plattner
,
S.
Doerr
,
G.
De Fabritiis
, and
F.
Noé
,
Nat. Chem.
9
,
1005
(
2017
).
19.
F.
Paul
,
C.
Wehmeyer
,
E. T.
Abualrous
,
H.
Wu
,
M. D.
Crabtree
,
J.
Schöneberg
,
J.
Clarke
,
C.
Freund
,
T. R.
Weikl
, and
F.
Noé
,
Nat. Commun.
8
,
1095
(
2017
).
20.
M.
Schor
,
A. S. J. S.
Mey
,
F.
Noé
, and
C. E.
MacPhee
,
J. Phys. Chem. Lett.
6
,
1076
(
2015
).
21.
P. H.
Nguyen
,
M. S.
Li
, and
P.
Derreumaux
,
J. Chem. Phys.
140
,
094105
(
2014
).
22.
L.
Molgedey
and
H. G.
Schuster
,
Phys. Rev. Lett.
72
,
3634
(
1994
).
23.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
24.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
2000
(
2013
).
25.
A.
Altis
,
M.
Otten
,
P. H.
Nguyen
,
R.
Hegger
, and
G.
Stock
,
J. Chem. Phys.
128
,
245102
(
2008
).
26.
M.
Carballo-Pacheco
and
B.
Strodel
,
J. Phys. Chem. B
120
,
2991
(
2016
).
27.
A.
Morriss-Andrews
and
J.-E.
Shea
,
Annu. Rev. Phys. Chem.
66
,
643
(
2015
).
28.
S.
Whitelam
and
R. L.
Jack
,
Annu. Rev. Phys. Chem.
66
,
143
(
2015
).
29.
F.
Sterpone
,
S.
Melchionna
,
P.
Tuffery
,
S.
Pasquali
,
N.
Mousseau
,
T.
Cragnolini
,
Y.
Chebaro
,
J.-F.
St-Pierre
,
M.
Kalimeri
,
A.
Barducci
,
Y.
Laurin
,
A.
Tek
,
M.
Baaden
,
P. H.
Nguyen
, and
P.
Derreumaux
,
Chem. Soc. Rev.
43
,
4871
(
2014
).
30.
T. P. J.
Knowles
,
M.
Vendruscolo
, and
C. M.
Dobson
,
Nat. Rev. Mol. Cell Biol.
15
,
496
(
2014
).
31.
J.
Nasica-Labouze
,
P. H.
Nguyen
,
F.
Sterpone
,
O.
Berthoumieu
,
N. V.
Buchete
,
S.
Coté
,
A.
De Simone
,
A. J.
Doig
,
P.
Faller
,
A.
Garcia
,
A.
Laio
,
M. S.
Li
,
S.
Melchionna
,
N.
Mousseau
,
Y.
Mu
,
A.
Paravastu
,
S.
Pasquali
,
D. J.
Rosenman
,
B.
Strodel
,
B.
Tarus
,
J. H.
Viles
,
T.
Zhang
,
C.
Wang
, and
P.
Derreumaux
,
Chem. Rev.
115
,
3518
(
2015
).
32.
C. A.
Ross
and
M. A.
Poirier
,
Nat. Med.
10
,
S10
(
2004
).
33.
W. L.
Klein
,
J. Alzheimer’s Dis.
33
,
S49
(
2012
).
34.
M. D.
Kirkitadze
,
G.
Bitan
, and
D. B.
Teplow
,
J. Neurosci. Res.
69
,
567
(
2002
).
35.
R.
Kayed
and
C. A.
Lasagna-Reeves
,
J. Alzheimer’s Dis.
33
,
S67
(
2012
).
36.
L.
Nagel-Steger
,
M. C.
Owen
, and
B.
Strodel
,
ChemBioChem
17
,
657
(
2016
).
37.
B.
Barz
,
Q.
Liao
, and
B.
Strodel
,
J. Am. Chem. Soc.
140
,
319
(
2018
).
38.
M.
Dong
,
H.
Li
,
D.
Hu
,
W.
Zhao
,
X.
Zhu
, and
H.
Ai
,
ACS Chem. Neurosci.
7
,
599
(
2016
).
39.
F.
Mustan
,
A.
Ivanova
,
G.
Madjarova
,
S.
Tcholakova
, and
N.
Denkov
,
J. Phys. Chem. B
119
,
15631
(
2015
).
40.
D. C.
Rapaport
,
J. E.
Johnson
, and
J.
Skolnick
,
Comput. Phys. Commun.
121
,
231
(
1999
).
41.
T.
Carpenter
,
P. J.
Bond
,
S.
Khalid
, and
M. S. P.
Sansom
,
Biophys. J.
95
,
3790
(
2008
).
42.
Y.
Yang
,
R. B.
Meyer
, and
M. F.
Hagan
,
Phys. Rev. Lett.
104
,
258102
(
2010
).
43.
B. J.
Reynwar
,
G.
Illya
,
V. A.
Harmandaris
,
M. M.
Müller
,
K.
Kremer
, and
M.
Deserno
,
Nature
447
,
461
(
2007
).
44.
M.
Carballo-Pacheco
,
A. E.
Ismail
, and
B.
Strodel
,
J. Phys. Chem. B
119
,
9696
(
2015
).
45.
D.
Roccatano
,
Micro Nanomanufacturing
(
Springer International Publishing
,
Cham
,
2018
), Vol. II, pp.
123
155
.
46.
N. W.
Kelley
,
V.
Vishal
,
G. A.
Krafft
, and
V. S.
Pande
,
J. Chem. Phys.
129
,
214707
(
2008
).
47.
C. T.
Leahy
,
A.
Kells
,
G.
Hummer
,
N.-V.
Buchete
, and
E.
Rosta
,
J. Chem. Phys.
147
,
152725
(
2017
).
48.
M. R.
Perkett
and
M. F.
Hagan
,
J. Chem. Phys.
140
,
214101
(
2014
).
49.
X.
Zeng
,
B.
Li
,
Q.
Qiao
,
L.
Zhu
,
Z.-Y.
Lu
, and
X.
Huang
,
Phys. Chem. Chem. Phys.
18
,
23494
(
2016
).
50.
Y.
Cao
,
X.
Jiang
, and
W.
Han
,
J. Chem. Theory Comput.
13
,
5731
(
2017
).
51.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
148
,
241730
(
2018
).
52.
L.
Tjernberg
,
W.
Hosia
,
N.
Bark
,
J.
Thyberg
, and
J.
Johansson
,
J. Biol. Chem.
277
,
43243
(
2002
).
53.
M.
Balbirnie
,
R.
Grothe
, and
D. S.
Eisenberg
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
2375
(
2001
).
54.
55.
G.
Bellesia
and
J. E.
Shea
,
Biophys. J.
96
,
875
(
2009
).
56.
G.
Wei
,
N.
Mousseau
, and
P.
Derreumaux
,
Biophys. J.
87
,
3648
(
2004
).
57.
A.
Melquiond
,
G.
Boucher
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Chem. Phys.
122
,
174904
(
2005
).
58.
A.
Melquiond
,
N.
Mousseau
, and
P.
Derreumaux
,
Proteins: Struct., Funct., Bioinf.
65
,
180
(
2006
).
59.
B.
Strodel
and
D. J.
Wales
,
J. Chem. Theory Comput.
4
,
657
(
2008
).
60.
A.
Baumketner
and
J.-E.
Shea
,
Biophys. J.
89
,
1493
(
2005
).
61.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
62.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
63.
J. D.
Chodera
and
F.
Noé
,
Curr. Opin. Struct. Biol.
25
,
135
(
2014
).
64.
F.
Noé
and
F.
Nüske
, “
A variational approach to modeling slow processes in stochastic dynamical systems
,”
SIAM Multiscale Model. Simul.
11
,
635
655
(
2013
).
65.
T. F.
Gonzalez
,
Theor. Comput. Sci.
38
,
293
(
1985
).
66.
S.
Kube
and
M.
Weber
,
J. Chem. Phys.
126
,
024103
(
2007
).
67.
R. T.
McGibbon
,
K. A.
Beauchamp
,
M. P.
Harrigan
,
C.
Klein
,
J. M.
Swails
,
C. X.
Hernández
,
C. R.
Schwantes
,
L. P.
Wang
,
T. J.
Lane
, and
V. S.
Pande
,
Biophys. J.
109
,
1528
(
2015
).
68.
M.
Ernst
,
F.
Sittel
, and
G.
Stock
,
J. Chem. Phys.
143
,
244114
(
2015
).
69.
F.
Sittel
and
G.
Stock
,
J. Chem. Phys.
149
,
150901
(
2018
).
70.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
71.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
72.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
73.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
(
1992
).
74.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
,
Proteins: Struct., Funct., Bioinf.
78
,
1950
(
2010
).
75.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
76.
M.
Carballo-Pacheco
and
B.
Strodel
,
Protein Sci.
26
,
174
(
2017
).
77.
A. M.
Fluitt
and
J. J.
De Pablo
,
Biophys. J.
109
,
1009
(
2015
).
78.
M.
Carballo-Pacheco
,
A. E.
Ismail
, and
B.
Strodel
,
J. Chem. Theory Comput.
14
,
6063
(
2018
).
79.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindah
,
SoftwareX
1–2
,
19
(
2015
).
80.
B.
Strodel
and
D. J.
Wales
,
Chem. Phys. Lett.
466
,
105
(
2008
).
81.
X.
Zhu
,
P. E. M.
Lopes
, and
A. D.
MacKerell
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
167
(
2012
).
82.
B. N.
Dominy
and
C. L.
Brooks
,
J. Phys. Chem. B
103
,
3765
(
1999
).
83.
T.
Lazaridis
and
M.
Karplus
,
Proteins: Struct., Funct., Genet.
35
,
133
(
1999
).
84.
D.
Petrov
and
B.
Zagrovic
,
PLoS Comput. Biol.
10
,
e1003638
(
2014
).
85.
R. T.
McGibbon
,
B. E.
Husic
, and
V. S.
Pande
,
J. Chem. Phys.
146
,
044109
(
2017
).

Supplementary Material

You do not currently have access to this content.