We numerically and experimentally study the segregation dynamics in a binary mixture of microswimmers which move on a two-dimensional substrate in a static periodic triangular-like light intensity field. The motility of the active particles is proportional to the imposed light intensity, and they possess a motility contrast, i.e., the prefactor depends on the species. In addition, the active particles also experience a torque aligning their motion towards the direction of the negative intensity gradient. We find a segregation of active particles near the intensity minima where typically one species is localized close to the minimum and the other one is centered around in an outer shell. For a very strong aligning torque, there is an exact mapping onto an equilibrium system in an effective external potential that is minimal at the intensity minima. This external potential is similar to (height-dependent) gravity such that one can define effective “heaviness” of the self-propelled particles. In analogy to shaken granular matter in gravity, we define a “colloidal Brazil nut effect” if the heavier particles are floating on top of the lighter ones. Using extensive Brownian dynamics simulations, we identify system parameters for the active colloidal Brazil nut effect to occur and explain it based on a generalized Archimedes’ principle within the effective equilibrium model: heavy particles are levitated in a dense fluid of lighter particles if their effective mass density is lower than that of the surrounding fluid. We also perform real-space experiments on light-activated self-propelled colloidal mixtures which confirm the theoretical predictions.

1.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
,
Eur. Phys. J. Spec. Top.
202
,
1
(
2012
).
2.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
,
Rep. Prog. Phys.
78
,
056601
(
2015
).
3.
4.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
5.
A.
Zöttl
and
H.
Stark
,
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
6.
G.
Gompper
,
C.
Bechinger
,
S.
Herminghaus
,
R.
Isele-Holder
,
U. B.
Kaupp
,
H.
Löwen
,
H.
Stark
, and
R. G.
Winkler
,
Eur. Phys. J. Spec. Top.
225
,
2061
(
2016
).
7.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
8.
J.
Palacci
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
,
Phys. Rev. Lett.
105
,
088304
(
2010
).
9.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
,
Soft Matter
7
,
8810
(
2011
).
10.
I.
Buttinoni
,
G.
Volpe
,
F.
Kümmel
,
G.
Volpe
, and
C.
Bechinger
,
J. Phys.: Condens. Matter
24
,
284129
(
2012
).
11.
J.
Palacci
,
S.
Sacanna
,
A.
Vatchinsky
,
P. M.
Chaikin
, and
D. J.
Pine
,
J. Am. Chem. Soc.
135
,
15978
(
2013
).
12.
J.
Palacci
,
S.
Sacanna
,
A.
Preska Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
,
Science
339
,
936
(
2013
).
13.
J.
Palacci
,
S.
Sacanna
,
S.-H.
Kim
,
G.-R.
Yi
,
D. J.
Pine
, and
P. M.
Chaikin
,
Phil. Trans. R. Soc. A
372
,
20130372
(
2014
).
14.
H.
Moyses
,
J.
Palacci
,
S.
Sacanna
, and
D. G.
Grier
,
Soft Matter
12
,
6357
(
2016
).
15.
W.
Wang
,
L. A.
Castro
,
M.
Hoyos
, and
T. E.
Mallouk
,
ACS Nano
6
,
6122
(
2012
).
16.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
,
Nature
437
,
862
(
2005
).
17.
G.
Grosjean
,
G.
Lagubeau
,
A.
Darras
,
M.
Hubert
,
G.
Lumay
, and
N.
Vandewalle
,
Sci. Rep.
5
,
16035
(
2015
).
18.
G.
Steinbach
,
S.
Gemming
, and
A.
Erbe
,
Eur. Phys. J. E
39
,
69
(
2016
).
19.
A.
Kaiser
,
A.
Snezhko
, and
I. S.
Aranson
,
Sci. Adv.
3
,
e1601469
(
2017
).
20.
A.
Bricard
,
J.-B.
Caussin
,
N.
Desreumaux
,
O.
Dauchot
, and
D.
Bartolo
,
Nature
503
,
95
(
2013
).
21.
A.
Morin
,
N.
Desreumaux
,
J.-B.
Caussin
, and
D.
Bartolo
,
Nat. Phys.
13
,
63
(
2017
).
22.
C. J.
Olson Reichhardt
and
C.
Reichhardt
,
Annu. Rev. Condens. Matter Phys.
8
,
51
(
2017
).
23.
O.
Pohl
and
H.
Stark
,
Phys. Rev. Lett.
112
,
238303
(
2014
).
24.
S.
Saha
,
R.
Golestanian
, and
S.
Ramaswamy
,
Phys. Rev. E
89
,
062316
(
2014
).
25.
B.
Liebchen
,
D.
Marenduzzo
,
I.
Pagonabarraga
, and
M. E.
Cates
,
Phys. Rev. Lett.
115
,
258301
(
2015
).
26.
B.
Liebchen
,
D.
Marenduzzo
, and
M. E.
Cates
,
Phys. Rev. Lett.
118
,
268001
(
2017
).
27.
C.
Jin
,
C.
Krüger
, and
C. C.
Maass
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
5089
(
2017
).
28.
W.
Gao
,
D.
Kagan
,
O. S.
Pak
,
C.
Clawson
,
S.
Campuzano
,
E.
Chuluun-Erdene
,
E.
Shipton
,
E. E.
Fullerton
,
L.
Zhang
,
E.
Lauga
, and
J.
Wang
,
Small
8
,
460
(
2012
).
29.
Y.
Hong
,
D.
Velegol
,
N.
Chaturvedi
, and
A.
Sen
,
Phys. Chem. Chem. Phys.
12
,
1423
(
2010
).
30.
Y.
Hong
,
N. M. K.
Blackman
,
N. D.
Kopp
,
A.
Sen
, and
D.
Velegol
,
Phys. Rev. Lett.
99
,
178103
(
2007
).
31.
P. K.
Ghosh
,
Y.
Li
,
F.
Marchesoni
, and
F.
Nori
,
Phys. Rev. E
92
,
012114
(
2015
).
32.
M. P.
Magiera
and
L.
Brendel
,
Phys. Rev. E
92
,
012304
(
2015
).
33.
J.
Grauer
,
H.
Löwen
, and
L. M. C.
Janssen
,
Phys. Rev. E
97
,
022608
(
2018
).
34.
J.
Stenhammar
,
R.
Wittkowski
,
D.
Marenduzzo
, and
M. E.
Cates
,
Sci. Adv.
2
,
e1501850
(
2016
).
35.
C.
Lozano
,
B.
ten Hagen
,
H.
Löwen
, and
C.
Bechinger
,
Nat. Commun.
7
,
12828
(
2016
).
36.
A.
Geiseler
,
P.
Hänggi
,
F.
Marchesoni
,
C.
Mulhern
, and
S.
Savel’ev
,
Phys. Rev. E
94
,
012613
(
2016
).
37.
A.
Geiseler
,
P.
Hänggi
, and
F.
Marchesoni
,
Entropy
19
,
97
(
2017
).
38.
A.
Geiseler
,
P.
Hänggi
, and
F.
Marchesoni
,
Sci. Rep.
7
,
41884
(
2017
).
39.
A.
Sharma
and
J. M.
Brader
,
Phys. Rev. E
96
,
032604
(
2017
).
40.
F.
Kümmel
,
B.
ten Hagen
,
R.
Wittkowski
,
I.
Buttinoni
,
R.
Eichhorn
,
G.
Volpe
,
H.
Löwen
, and
C.
Bechinger
,
Phys. Rev. Lett.
110
,
198302
(
2013
).
41.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
,
Phys. Rev. Lett.
110
,
238301
(
2013
).
42.
B.
ten Hagen
,
F.
Kümmel
,
R.
Wittkowski
,
D.
Takagi
,
H.
Löwen
, and
C.
Bechinger
,
Nat. Commun.
5
,
4829
(
2014
).
43.
N.
Razin
,
R.
Voituriez
,
J.
Elgeti
, and
N. S.
Gov
,
Phys. Rev. E
96
,
052409
(
2017
).
44.
H.
Löwen
,
T.
Horn
,
T.
Neuhaus
, and
B.
ten Hagen
,
Eur. Phys. J. Spec. Top.
222
,
2961
(
2013
).
45.
H.
Löwen
,
J. Phys.: Condens. Matter
10
,
L479
(
1998
).
46.
A.
Torres
,
A.
Cuetos
,
M.
Dijkstra
, and
R.
van Roij
,
Phys. Rev. E
75
,
041405
(
2007
).
47.
T.-Y.
Wang
,
H.-T.
Li
,
Y.-J.
Sheng
, and
H.-K.
Tsao
,
J. Chem. Phys.
129
,
204504
(
2008
).
48.
H.
Löwen
and
E.
Allahyarov
,
J. Chem. Phys.
135
,
134115
(
2011
).
49.
A. P.
Philipse
,
Curr. Opin. Colloid Interface Sci.
2
,
200
(
1997
).
50.
M.
Raşa
and
A. P.
Philipse
,
Nature
429
,
857
(
2004
).
51.
R.
Piazza
,
T.
Bellini
, and
V.
Degiorgio
,
Phys. Rev. Lett.
71
,
4267
(
1993
).
52.
N. J.
Lorenz
,
H. J.
Schoepe
, and
T.
Palberg
,
J. Chem. Phys.
131
,
134501
(
2009
).
53.
G.
Brambilla
,
S.
Buzzaccaro
,
R.
Piazza
,
L.
Berthier
, and
L.
Cipelletti
,
Phys. Rev. Lett.
106
,
118302
(
2011
).
54.
55.
A. P. J.
Breu
,
H.-M.
Ensner
,
C. A.
Kruelle
, and
I.
Rehberg
,
Phys. Rev. Lett.
90
,
014302
(
2003
).
56.
V.
Garzó
,
Phys. Rev. E
78
,
020301(R)
(
2008
).
57.
S.
Godoy
,
D.
Risso
,
R.
Soto
, and
P.
Cordero
,
Phys. Rev. E
78
,
031301
(
2008
).
58.
C.
Lozano
,
I.
Zuriguel
,
A.
Garcimartín
, and
T.
Mullin
,
Phys. Rev. Lett.
114
,
178002
(
2015
).
59.
D. C.
Hong
,
P. V.
Quinn
, and
S.
Luding
,
Phys. Rev. Lett.
86
,
3423
(
2001
).
60.
A.
Rosato
,
K. J.
Strandburg
,
F.
Prinz
, and
R. H.
Swendsen
,
Phys. Rev. Lett.
58
,
1038
(
1987
).
61.
T.
Biben
and
J.-P.
Hansen
,
Mol. Phys.
80
,
853
(
1993
).
62.
A.
Esztermann
and
H.
Löwen
,
Europhys. Lett.
68
,
120
(
2004
).
63.
J.
Zwanikken
and
R.
van Roij
,
Europhys. Lett.
71
,
480
(
2005
).
64.
E.
Spruijt
and
P. M.
Biesheuvel
,
J. Phys.: Condens. Matter
26
,
075101
(
2014
).
65.
M.
Dijkstra
,
J.
Zwanikken
, and
R.
van Roij
,
J. Phys.: Condens. Matter
18
,
825
(
2006
).
66.
P. M.
Biesheuvel
and
J.
Lyklema
,
J. Phys.: Condens. Matter
17
,
6337
(
2005
).
67.
S.-C.
Kim
and
Y.-S.
Han
,
J. Mol. Liq.
208
,
298
(
2015
).
68.
T.
Kruppa
,
T.
Neuhaus
,
R.
Messina
, and
H.
Löwen
,
J. Chem. Phys.
136
,
134106
(
2012
).
69.
N.
Razin
,
R.
Voituriez
,
J.
Elgeti
, and
N. S.
Gov
,
Phys. Rev. E
96
,
032606
(
2017
).
70.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
71.
B.
Liebchen
and
H.
Löwen
, e-print arXiv:1808.07389 (
2018
).
72.
A. P.
Solon
,
J.
Stenhammar
,
R.
Wittkowski
,
M.
Kardar
,
Y.
Kafri
,
M. E.
Cates
, and
J.
Tailleur
,
Phys. Rev. Lett.
114
,
198301
(
2015
).
74.
A.
Parola
,
S.
Buzzaccaro
,
E.
Secchi
, and
R.
Piazza
,
J. Chem. Phys.
138
,
114907
(
2013
).
75.
R.
Piazza
,
S.
Buzzaccaro
,
E.
Secchi
, and
A.
Parola
,
Soft Matter
8
,
7112
(
2012
).
76.
J. R.
Gomez-Solano
,
S.
Samin
,
C.
Lozano
,
P.
Ruedas-Batuecas
,
R.
van Roij
, and
C.
Bechinger
,
Sci. Rep.
7
,
14891
(
2017
).
77.
C.
Lozano
,
J. R.
Gomez-Solano
, and
C.
Bechinger
,
New J. Phys.
20
,
015008
(
2018
).
78.
M.
Enculescu
and
H.
Stark
,
Phys. Rev. Lett.
107
,
058301
(
2011
).
79.
K.
Wolff
,
A. M.
Hahn
, and
H.
Stark
,
Eur. Phys. J. E
36
,
43
(
2013
).
80.
F.
Ginot
,
A.
Solon
,
Y.
Kafri
,
C.
Ybert
,
J.
Tailleur
, and
C.
Cottin-Bizonne
,
New J. Phys.
20
,
115001
(
2018
).
81.
F.
Smallenburg
and
H.
Löwen
,
Phys. Rev. E
92
,
032304
(
2015
).
82.
N.
Nikola
,
A. P.
Solon
,
Y.
Kafri
,
M.
Kardar
,
J.
Tailleur
, and
R.
Voituriez
,
Phys. Rev. Lett.
117
,
098001
(
2016
).
83.
F.
Ginot
,
I.
Theurkauff
,
D.
Levis
,
C.
Ybert
,
L.
Bocquet
,
L.
Berthier
, and
C.
Cottin-Bizonne
,
Phys. Rev. X
5
,
011004
(
2015
).
84.
A. I.
Campbell
,
R.
Wittkowski
,
B.
ten Hagen
,
H.
Löwen
, and
S. J.
Ebbens
,
J. Chem. Phys.
147
,
084905
(
2017
).
85.
A.
Dominguez
,
P.
Malgaretti
,
M. N.
Popescu
, and
S.
Dietrich
,
Soft Matter
12
,
8398
(
2016
).
86.
F.
Martinez-Pedrero
,
E.
Navarro-Argemí
,
A.
Ortiz-Ambriz
,
I.
Pagonabarraga
, and
P.
Tierno
,
Sci. Adv.
4
,
eaap9379
(
2018
).
87.
A.
Wysocki
,
R. G.
Winkler
, and
G.
Gompper
,
New J. Phys.
18
,
123030
(
2016
).
88.
N.
Bain
and
D.
Bartolo
,
Nat. Commun.
8
,
15969
(
2017
).
89.
S.
Kumari
,
A. S.
Nunes
,
N. A. M.
Araújo
, and
M. M.
Telo da Gama
,
J. Chem. Phys.
147
,
174702
(
2017
).
90.
R.
Wittmann
,
J. M.
Brader
,
A.
Sharma
, and
U. M. B.
Marconi
,
Phys. Rev. E
97
,
012601
(
2018
).
You do not currently have access to this content.