The presence of small hydrocarbons is known to reduce the interfacial tension of the gas-water interface, and this phenomenon can affect the formation of the clathrate hydrates of these gases. In this work, the interfacial behavior of the pure methane-, ethane-, and propane-water, and the ternary 90:7:3 mol. % gas mixture of (methane + ethane + propane)-water were studied with molecular dynamics simulations. The interfacial tension, γ, and z-density profiles for the gases and water from simulations of the gas-water systems were determined at the temperatures of 275.15 and 298.15 K, and pressures up to 10 MPa for methane and up to near the experimental saturation pressures of ethane and propane. The goal is to accurately calculate the interfacial tension for the hydrocarbon/water systems and to analyze the molecular behaviors at the interfaces which lead to the observed trends. At the same hydrostatic gas phase pressure, propane, ethane, and methane reduce the gas-water interfacial tension in that order. The local density of the gas molecules at the interface is enhanced relative to the bulk gas, and it was determined that about 13%-20%, 33%-40%, and 54%-59% of the gas molecules in the simulation congregated at the interfaces for the CH4-, C2H6-, and C3H8-water systems, respectively, at the different simulated hydrostatic pressure ranges. For all gases in the pressure range studied, a complete monolayer of gas had not formed at the water interface. Furthermore, a dynamic equilibrium with fast exchange between molecules at the interface and in the gas phase was observed. For the gas mixture, deviations were observed between total calculated interfacial tension, γmix, and the “ideal mixture” value, ∑xiγi,pure, calculated from the interfacial tensions of the pure gases, where xi is the mole fraction of each substance in the simulation. Some possible implications of the results on the mechanism of clathrate hydrate formation are discussed.

1.
J.
Carroll
,
Natural Gas Hydrates
, 2nd ed. (
Elsevier
,
2002
).
2.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
Taylor & Francis–CRC Press
,
2008
).
3.
F. S.
Merkel
,
C.
Schmuck
,
H. J.
Schultz
,
T. A.
Scholz
, and
S.
Wolinski
, “
Research on gas hydrate plug formation under pipeline-like conditions
,”
Int. J. Chem. Eng.
2015
,
214638
.
4.
C.
Sun
,
W.
Li
,
X.
Yang
,
F.
Li
,
Q.
Yuan
,
L.
Mu
,
J.
Chen
,
B.
Liu
, and
G.
Chen
, “
Progress in research of gas hydrate
,”
Chin. J. Chem. Eng.
19
,
151
162
(
2011
).
5.
E. A.
Smelik
and
H. E.
King
, “
Crystal-growth studies of natural gas hydrates using a pressurized optical cell
,”
Am. Mineral.
82
,
88
98
(
1997
).
6.
T.
Uchida
,
T.
Ebinuma
, and
S.
Mae
, “
Formation rate measurements of CO2 hydrate film formed at liquid CO2 water interface
,” in
Greenhouse Gas Control Technologies
, edited by
P.
Riemer
,
B.
Eliasson
, and
A.
Wokaun
(
Elsevier
,
1999
), p.
1073
.
7.
W.
Sachs
and
V.
Meyn
, “
Pressure and temperature dependence of the surface tension in the system natural gas/water principles of investigation and the first precise experimental data for pure methane/water at 25 C up to 46.8 MPa
,”
Colloids Surf., A
94
,
291
301
(
1995
).
8.
Q.-Y.
Ren
,
G.-J.
Chen
,
W.
Yan
, and
T.-M.
Guo
, “
Interfacial tension of (CO2 + CH4) + water from 298 K to 373 K and pressures up to 30 MPa
,”
J. Chem. Eng. Data
45
,
610
612
(
2000
).
9.
S.
Khosharay
and
F.
Varaminian
, “
Experimental and modeling investigation on surface tension and surface properties of (CH4+H2O), (C2H6+H2O), (CO2+H2O) and (C3H8+H2O) from 284.15 K to 312.15 K and pressures up to 60 bar
,”
Int. J. Refrig.
47
,
26
35
(
2014
).
10.
K.
Yasuda
,
Y. H.
Mori
, and
R.
Ohmura
, “
Interfacial tension measurements in water-methane system at temperatures from 278.15 K to 298.15 K and pressures up to 10 MPa
,”
Fluid Phase Equilib.
413
,
170
175
(
2016
).
11.
H.
Hayama
,
K.
Fukuzawa
,
K.
Yasuda
, and
R.
Ohmura
, “
Interfacial tension between (methane + ethane + propane) gas mixture and water from 283.2 K to 298.2 K under up to 10 MPa
,”
J. Chem. Thermodyn.
108
,
71
75
(
2017
).
12.
B.
Kvamme
,
T.
Kuznetsova
, and
K. A. G.
Schmidt
, “
Experimental measurements and numerical modelling of interfacial tension in water-methane systems
,” in
Proceedings of the Fourth WSEAS (International Conference on Heat and Mass Transfer)
,
2007
.
13.
S. K.
Reed
and
R. E.
Westacott
, “
The interface between water and a hydrophobic gas
,”
Phys. Chem. Chem. Phys.
10
,
4614
(
2008
).
14.
A.
Ghoufi
and
P.
Malfreyt
, “
Numerical evidence of the formation of a thin microscopic film of methane at the water surface: A free energy calculation
,”
Phys. Chem. Chem. Phys.
12
,
5203
5205
(
2010
).
15.
F.
Biscay
,
A.
Ghoufi
, and
P.
Malfreyt
, “
Adsorption of n-alkane vapours at the water surface
,”
Phys. Chem. Chem. Phys.
13
,
11308
11316
(
2011
).
16.
R.
Sakamaki
,
A. K.
Sum
,
T.
Narumi
,
R.
Ohmura
, and
K.
Yasuoka
, “
Thermodynamic properties of methane/water interface predicted by molecular dynamics simulations
,”
J. Chem. Phys.
134
,
144702
(
2011
).
17.
P.
Naeiji
,
F.
Varaminian
, and
M.
Rahmati
, “
Thermodynamic and structural properties of methane/water systems at the threshold of hydrate formation predicted by molecular dynamic simulations
,”
J. Nat. Gas Sci. Eng.
31
,
555
561
(
2016
).
18.
Y.
Yang
,
A. K.
Narayanan Nair
, and
S.
Sun
, “
Molecular dynamics simulation study of carbon dioxide, methane, and their mixture in the presence of brine
,”
J. Phys. Chem. B
121
,
9688
9698
(
2017
).
19.
W.
Smith
and
T. R.
Forester
, “
DL_POLY_2.0: A general purpose parallel molecular dynamics simulation package
,”
J. Mol. Graphics
14
,
136
141
(
1996
).
20.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
21.
M. G.
Martin
and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. I. United-atom description of n-alkanes
,”
J. Phys. Chem. B
102
,
2569
2577
(
1998
).
22.
C.
Vega
and
E.
de Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
,
154707
(
2007
).
23.
J.
Alejandre
and
G. A.
Chapela
, “
The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions
,”
J. Chem. Phys.
132
,
014701
(
2010
).
24.
R.
Sakamaki
,
A. K.
Sum
,
T.
Narumi
, and
K.
Yasuoka
, “
Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models
,”
J. Chem. Phys.
134
,
124708
(
2011
).
25.
H.
Docherty
,
A.
Galindo
,
C.
Vega
, and
E.
Sanz
, “
A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate
,”
J. Chem. Phys.
125
,
074510
(
2006
).
26.
L. H.
Gevantaman
,
Solubility of Selected Gases in Water
, Solubility Data Series (
International Union of Pure and Applied Chemistry
,
1990
).
27.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
28.
J.
Alejandre
,
D. J.
Tildesley
, and
G. A.
Chapela
, “
Molecular dynamics simulation of the orthobaric densities and surface tension of water
,”
J. Chem. Phys.
102
,
4574
(
1995
).
29.
D.-Y.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
,
59
64
(
1976
).
30.
J.
Lopez-Echeverry
,
S.
Reif-Acherman
, and
E.
Araujo-Lopez
, “
Peng-Robinson equation of state: 40 years through cubics
,”
Fluid Phase Equilib.
447
,
39
71
(
2017
).
31.
F.
Biscay
,
A.
Ghoufi
,
V.
Lachet
, and
P.
Malfreyt
, “
Monte Carlo calculation of the methane-water interfacial tension at high pressures
,”
J. Chem. Phys.
131
,
124707
(
2009
).
32.
M.
Míguez
,
M. M.
Piñeiro
, and
F. J.
Blas
, “
Influence of the long-range corrections on the interfacial properties of molecular models using Monte Carlo simulation
,”
J. Chem. Phys.
138
,
034707
(
2013
).
33.
H. S.
Ashbaugh
and
B. A.
Pethica
, “
Alkane adsorption at the water-vapor interface
,”
Langmuir
19
,
7638
8645
(
2003
).
34.
S.
Yang
, “
Natural gas physical properties under high pressure
,” in
Fundamentals of Petrophysics
(
Springer
,
2017
).
35.
G.
Wiegand
and
E. U.
Franck
, “
Interfacial tension between water and non-polar fluids up to 473 K and 2800 bar
,”
Ber. Bunsen-Gen. Phys. Chem.
98
,
809
817
(
1994
).
36.
H. J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(
Wiley-VCH
,
2003
).
37.
B.
Shi
,
S.
Sinha
, and
V. K.
Dhir
, “
Molecular dynamics simulation of the density and surface tension of water by particle-particle particle-mesh method
,”
J. Chem. Phys.
124
,
204715
(
2006
).
38.
C.
Miqueu
,
J. M.
Míguez
,
M. M.
Piñeiro
,
T.
Lafitte
, and
B.
Mendiboure
, “
Simultaneous application of the gradient theory and Monte Carlo molecular simulation for the investigation of methane/water interfacial properties
,”
J. Phys. Chem. B
115
,
9618
9625
(
2011
).
39.
B. A.
Younglove
and
J. F.
Ely
, “
Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane
,”
J. Phys. Chem. Ref. Data
16
,
577
798
(
1987
).
40.
W.
Kondo
,
H.
Ogawa
,
R.
Ohmura
, and
Y. H.
Mori
, “
Clathrate hydrate formation from a hydrocarbon gas mixture: Evolution of gas-phase composition in a hydrate-forming reactor
,”
Energy Fuels
24
,
6375
6383
(
2010
).
41.
W. M.
Deaton
and
E. M.
Frost
,
Gas Hydrates and Their Relation to the Operation of Natural Gas Pipelines
(
U.S. Bureau of Mines Monograph 8
,
1946
).

Supplementary Material

You do not currently have access to this content.