Understanding the effect of glassy dynamics on the stability of bio-macromolecules and investigating the underlying relaxation processes governing degradation processes of these macromolecules are of immense importance in the context of bio-preservation. In this work, we have studied the stability of a model polymer chain in a supercooled glass-forming liquid at different amounts of supercooling in order to understand how dynamics of supercooled liquids influence the collapse behavior of the polymer. Our systematic computer simulation studies find that, apart from long time relaxation processes (α relaxation), short time dynamics of the supercooled liquid, known as β relaxation, is also correlated with the stability of the model polymer. We also show that anti-plasticizing effect found in this context can be rationalized using the β-relaxation process and how it is modified due to changes in the specific interactions between the biomolecules and the solvent molecules or changes in the local packing around the biomolecules. Our results corroborate with other recent results which suggest that it is important to take in to account both the α and β relaxation times while choosing appropriate bio-preservatives. We believe that our results will have implications in understanding the primary factors in protein stabilization in the context of bio-preservation.

1.
J. F.
Carpenter
,
J. H.
Crowe
, and
L. M.
Crowe
, “
The role of vitrification in anhydrobiosis
,”
Annu. Rev. Physiol.
60
,
73
103
(
1998
).
2.
M. A.
Mensink
,
H. W.
Frijlink
,
K. V.
Maarschalk
, and
W. L. J.
Hinrichs
, “
How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions
,”
Eur. J. Pharm. Biopharm.
114
,
288
295
(
2017
).
3.
T. E.
Dirama
,
G. A.
Carri
, and
A. P.
Sokolov
,
J. Chem. Phys.
122
,
114505
(
2005
).
4.
A.
Ansari
,
C. M.
Jones
,
E. R.
Henry
,
J.
Hofrichter
, and
W. A.
Eaton
, “
The role of solvent viscosity in the dynamics of protein conformational changes
,”
Science
256
,
1796
1798
(
1992
).
5.
V. L.
Kett
,
M. L. H.
Duncan
,
Q. M.
Craig
, and
P. G.
Royall
, “
The relevance of the amorphous state to pharmaceutical dosage forms: Glassy drugs and freeze dried systems
,”
Int. J. Pharm.
179
,
179
207
(
1999
).
6.
M. T.
Cicerone
and
J. F.
Douglas
, “
β-relaxation governs protein stability in sugar-glass matrices
,”
Soft Matter
8
,
2983
(
2012
).
7.
M. T.
Cicerone
and
C. L.
Soles
, “
Fast dynamics and stabilization of proteins: Binary glasses of trehalose and glycerol
,”
Biophys. J.
86
,
3836
3845
(
2004
).
8.
S.
Khodadadi
and
A. P.
Sokolov
, “
Protein dynamics: From rattling in a cage to structural relaxation
,”
Soft Matter
11
,
4984
4998
(
2015
).
9.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
645
(
2011
).
10.
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
, “
Growing length scales and their relation to timescales in glass-forming liquids
,”
Annu. Rev. Condens. Matter Phys.
5
,
255
(
2014
).
11.
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
, “
Length scales in glass-forming liquids and related systems: A review
,”
Rep. Prog. Phys.
79
,
016601
(
2016
).
12.
S.
Karmakar
, “
An overview on short and long time relaxations in glass-forming supercooled liquids
,”
J. Phys.: Conf. Ser.
759
,
012008
(
2016
).
13.
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
, “
Growing length and time scales in glass-forming liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
3675
(
2009
).
14.
S.
Karmakar
,
C.
Dasgupta
, and
S.
Sastry
, “
Short-time beta relaxation in glass-forming liquids is cooperative in nature
,”
Phys. Rev. Lett.
116
,
085701
(
2016
).
15.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
2009
).
16.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
17.
M. T.
Cicerone
and
M.
Tyagi
,
J. Chem. Phys.
146
,
054502
(
2017
).
18.
H.-B.
Yu
,
R.
Richert
, and
K.
Samwer
,
Sci. Adv.
3
,
e1701577
(
2017
).
19.
B. J.
Berne
,
R.
Zangi
, and
R.
Zhou
, “
Urea’s action on hydrophobic interactions
,”
J. Am. Chem. Soc.
131
,
1535
1541
(
2009
).
20.
B.
Hess
,
C.
Kutzner
,
D.
Van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
21.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsterne
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
(
1984
).
22.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity-rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
23.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
24.
W.
Kob
and
H. C.
Andersen
, “
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function
,”
Phys. Rev. E
51
,
4626
(
1995
).
25.
H.
Vogel
,
Z. Phys.
22
,
645
(
1921
);
D.
Tammann
,
J. Soc. Glass Technol.
9
,
166
(
1925
).
26.
W.
Kauzmann
,
Chem. Rev.
43
,
219
(
1948
).
27.
W.
Kob
and
J.-L.
Barrat
,
Phys. Rev. Lett.
78
,
4581
(
1997
).
28.
S.
Kwon
,
H. W.
Cho
,
J.
Kim
, and
B. J.
Sung
, “
Fractional viscosity dependence of reaction kinetics in glass-forming liquids
,”
Phys. Rev. Lett.
119
,
087801
(
2017
).
You do not currently have access to this content.