Complementary deoxyribonucleic acid (DNA) strands in solution reliably hybridize to form stable duplexes. We study the kinetics of the hybridization process and the mechanisms by which two initially isolated strands come together to form a stable double helix. We adopt a multi-step computational approach. First, we perform a large number of Brownian dynamics simulations of the hybridization process using the coarse-grained oxDNA2 model. Second, we use these simulations to construct a Markov state model of DNA dynamics that uses a state decomposition based on the inter-strand hydrogen bonding pattern. Third, we take advantage of transition path theory to obtain quantitative information about the thermodynamic and dynamic properties of the hybridization process. We find that while there is a large ensemble of possible hybridization pathways, there is a single dominant mechanism in which an initial base pair forms close to either end of the nascent double helix, and the remaining bases pair sequentially in a zipper-like fashion. We also show that the number of formed base pairs by itself is insufficient to describe the transition state of the hybridization process.

2.
P. W. K.
Rothemund
,
Nature
440
,
297
(
2006
).
3.
C. A.
Mirkin
,
R. L.
Letsinger
,
R. C.
Mucic
, and
J. J.
Storhoff
,
Nature
382
,
607
(
1996
).
4.
L. Y. T.
Chou
,
K.
Zagorovsky
, and
W. C. W.
Chan
,
Nat. Nanotechnol.
9
,
148
(
2014
).
5.
J. G.
Wetmur
and
N.
Davidson
,
J. Mol. Biol.
31
,
349
(
1968
).
6.
D.
Pörschke
and
M.
Eigen
,
J. Mol. Biol.
62
,
361
(
1971
).
7.
I. I.
Cisse
,
H.
Kim
, and
T.
Ha
,
Nat. Struct. Mol. Biol.
19
,
623
(
2012
).
8.
G.
Niranjani
and
R.
Murugan
,
PLoS One
11
,
e0153172
(
2016
).
9.
K. M.
Parkhurst
and
L. J.
Parkhurst
,
Biochemistry
34
,
285
(
1995
).
10.
X.
Wang
,
H. J.
Lim
, and
A.
Son
,
Environ. Health Toxicol.
29
,
e2014007
(
2014
).
11.
A.
Barhoumi
and
N. J.
Halas
,
J. Am. Chem. Soc.
132
,
12792
(
2010
).
12.
T. G.
Drummond
,
M. G.
Hill
, and
J. K.
Barton
,
Nat. Biotechnol.
21
,
1192
(
2003
).
13.
S.
Sorgenfrei
,
C.-y.
Chiu
,
R. L.
Gonzalez
,
Y.-J.
Yu
,
P.
Kim
,
C.
Nuckolls
, and
K. L.
Shepard
,
Nat. Nanotechnol.
6
,
126
(
2011
).
14.
J.
Liphardt
,
B.
Onoa
,
S. B.
Smith
,
I.
Tinoco
, and
C.
Bustamante
,
Science
292
,
733
(
2001
).
15.
M. T.
Woodside
,
P. C.
Anthony
,
W. M.
Behnke-Parks
,
K.
Larizadeh
,
D.
Herschlag
, and
S. M.
Block
,
Science
314
,
1001
(
2006
).
16.
C.
Chen
,
W.
Wang
,
Z.
Wang
,
F.
Wei
, and
X. S.
Zhao
,
Nucleic Acids Res.
35
,
2875
(
2007
).
17.
V. V.
Didenko
,
BioTechniques
31
,
1106
(
2001
).
18.
X.
Chen
,
Y.
Zhou
,
P.
Qu
, and
X. S.
Zhao
,
J. Am. Chem. Soc.
130
,
16947
(
2008
).
19.
G.
Altan-Bonnet
,
A.
Libchaber
, and
O.
Krichevsky
,
Phys. Rev. Lett.
90
,
138101
(
2003
).
21.
J.
SantaLucia
and
D.
Hicks
,
Annu. Rev. Biophys. Biomol. Struct.
33
,
415
(
2004
).
22.
B. E. K.
Snodin
,
F.
Randisi
,
M.
Mosayebi
,
P.
Šulc
,
J. S.
Schreck
,
F.
Romano
,
T. E.
Ouldridge
,
R.
Tsukanov
,
E.
Nir
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
142
,
234901
(
2015
).
23.
T. E.
Ouldridge
,
P.
Šulc
,
F.
Romano
,
J. P. K.
Doye
, and
A. A.
Louis
,
Nucleic Acids Res.
41
,
8886
(
2013
).
24.
N.
Srinivas
,
T. E.
Ouldridge
,
P.
Šulc
,
J. M.
Schaeffer
,
B.
Yurke
,
A. A.
Louis
,
J. P. K.
Doye
, and
E.
Winfree
,
Nucleic Acids Res.
41
,
10641
(
2013
).
25.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
124101
(
2009
).
26.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
27.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
,
J. Am. Chem. Soc.
132
,
1526
(
2010
).
28.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
29.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
Multiscale Model. Simul.
7
,
1192
(
2009
).
30.
K. A.
Beauchamp
,
G. R.
Bowman
,
T. J.
Lane
,
L.
Maibaum
,
I. S.
Haque
, and
V. S.
Pande
,
J. Chem. Theory Comput.
7
,
3412
(
2011
).
31.
J. H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schtte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
32.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
(
2004
).
33.
W.
E
and
E.
Vanden-Eijnden
,
J. Stat. Phys.
123
,
503
(
2006
).
34.
A.
Dickson
and
C. L.
Brooks
,
J. Chem. Theory Comput.
8
,
3044
(
2012
).
35.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
(
2004
).
36.
D. H.
Turner
,
N.
Sugimoto
,
R.
Kierzek
, and
S. D.
Dreiker
,
J. Am. Chem. Soc.
109
,
3783
(
1987
).
37.
F. H.
Martin
,
M. M.
Castro
,
F.
Aboul-ela
, and
I.
Tinoco
,
Nucleic Acids Res.
13
,
8927
(
1985
).
38.
F.
Aboul-ela
,
D.
Koh
,
I.
Tinoco
, and
F. H.
Martin
,
Nucleic Acids Res.
13
,
4811
(
1985
).
39.
S. M.
Freier
,
R.
Kierzek
,
J. A.
Jaeger
,
N.
Sugimoto
,
M. H.
Caruthers
,
T.
Neilson
, and
D. H.
Turner
,
Proc. Natl. Acad. Sci. U. S. A.
83
,
9373
(
1986
).
40.
Y.
Kawase
,
S.
Iwai
,
H.
Inoue
,
K.
Miura
, and
E.
Ohtsuka
,
Nucleic Acids Res.
14
,
7727
(
1986
).
41.
B. L.
Gaffney
,
L. A.
Marky
, and
R. A.
Jones
,
Tetrahedron
40
,
3
(
1984
).
42.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
134
,
085101
(
2011
).
43.
E. J.
Sambriski
,
D. C.
Schwartz
, and
J. J.
de Pablo
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
18125
(
2009
).
44.
D. M.
Hinckley
,
G. S.
Freeman
,
J. K.
Whitmer
, and
J. J.
de Pablo
,
J. Chem. Phys.
139
,
144903
(
2013
).
45.
D. M.
Hinckley
,
J. P.
Lequieu
, and
J. J.
de Pablo
,
J. Chem. Phys.
141
,
035102
(
2014
).
46.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
47.
G.
Torrie
and
J.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
48.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
49.
R. J.
Allen
,
C.
Valeriani
, and
P.
Rein ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).

Supplementary Material

You do not currently have access to this content.