We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.

1.
Y.
Zaushitsyn
,
K. G.
Jespersen
,
L.
Valkunas
,
V.
Sundström
, and
A.
Yartsev
,
Phys. Rev. B
75
,
195201
(
2007
).
2.
D. C.
Dai
and
A. P.
Monkman
,
Phys. Rev. B
87
,
045308
(
2013
).
3.
M. A.
Stevens
,
C.
Silva
,
D. M.
Russell
, and
R. H.
Friend
,
Phys. Rev. B
63
,
165213
(
2001
).
4.
S.
Cook
,
H.
Liyuan
,
A.
Furube
, and
R.
Katoh
,
J. Phys. Chem. C
114
,
10962
(
2010
).
5.
A.
Lewis
,
A.
Ruseckas
,
O.
Gaudin
,
G.
Webster
,
P.
Burn
, and
I.
Samuel
,
Org. Electron.
7
,
452
(
2006
).
6.
D.
Peckus
,
A.
Devižis
,
D.
Hertel
,
K.
Meerholz
, and
V.
Gulbinas
,
Chem. Phys.
404
,
42
(
2012
).
7.
S.
Gòlinas
,
J.
Kirkpatrick
,
I. A.
Howard
,
K.
Johnson
,
M. W. B.
Wilson
,
G.
Pace
,
R. H.
Friend
, and
C.
Silva
,
J. Phys. Chem. B
117
,
4649
(
2013
).
8.
R. S.
Knox
,
Theory of Excitons, Solid State Physics
, Advances in Research and Applications, Vol. 5 (
Academic Press
,
New York
,
1963
).
9.
A. S.
Davydov
,
Theory of Molecular Excitons
(
Plenum
,
New York
,
1971
).
10.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley VCH
,
Weinheim
,
2011
).
11.
H.
Marciniak
,
X.-Q.
Li
,
F.
Würthner
, and
S.
Lochbrunner
,
J. Phys. Chem. A
115
,
648
(
2011
).
12.
S.
Wolter
,
J.
Aizezers
,
F.
Fennel
,
M.
Seidel
,
F.
Würthner
,
O.
Kühn
, and
S.
Lochbrunner
,
New J. Phys.
14
,
105027
(
2012
).
13.
F.
Fennel
and
S.
Lochbrunner
,
Phys. Rev. B
92
,
140301
(
2015
).
14.
S. F.
Völker
,
A.
Schmiedel
,
M.
Holzapfel
,
K.
Renziehausen
,
V.
Engel
, and
C.
Lambert
,
J. Phys. Chem. C
118
,
17467
17482
(
2014
).
15.
B.
Brüggemann
and
T.
Pullerits
,
New J. Phys.
13
,
025024
(
2011
).
16.
J.
Dostál
,
F.
Fennel
,
F.
Koch
,
S.
Herbst
,
F.
Würthner
, and
T.
Brixner
,
Nat. Commun.
9
,
2466
(
2018
).
17.
W. P.
Aue
,
E.
Bartholdi
, and
R. R.
Ernst
,
J. Chem. Phys.
64
,
2229
(
1976
).
18.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Clarendon Press
,
Oxford
,
1987
).
19.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
20.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
,
J. Phys. Chem. A
107
,
5258
(
2003
).
21.
J.
Bredenbeck
,
J.
Helbing
,
C.
Kolano
, and
P.
Hamm
,
Chem. Phys. Chem.
8
,
1747
(
2007
).
22.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Baton Rouge
,
2009
).
23.
I. J.
Finkelstein
,
J.
Zheng
,
H.
Ishikawa
,
S.
Kim
,
K.
Kwak
, and
M. D.
Fayer
,
Phys. Chem. Chem. Phys.
9
,
1533
(
2007
).
24.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2011
).
25.
M. D.
Fayer
,
Ultrafast Infrared Vibrational Spectroscopy
(
CRC
,
Boca Raton
,
2013
).
26.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M. G.
Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
(
1998
).
28.
P.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
,
Science
300
,
1553
(
2003
).
29.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
30.
T.
Brixner
,
T.
Mančal
,
I.
Stiopkin
, and
G. R.
Fleming
,
J. Chem. Phys.
121
,
4221
(
2004
).
31.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
(
2005
).
32.
F. D.
Fuller
and
J. P.
Ogilvie
,
Annu. Rev. Phys. Chem.
66
,
667
(
2015
).
33.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
,
Angew. Chem., Int. Ed. Engl.
54
,
11368
(
2015
).
34.
V.
Szöcs
,
T.
Palszegi
,
V.
Lukes
,
J.
Sperling
,
F.
Milota
,
W.
Jakubetz
, and
H. F.
Kauffmann
,
J. Chem. Phys.
124
,
124511
(
2006
).
35.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
,
782
(
2007
).
36.
E. L.
Read
,
G. S.
Schlau-Cohen
,
G. S.
Engel
,
J.
Wen
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Biophys. J.
95
,
847
(
2008
).
37.
T.
Mančal
,
N.
Christensson
,
V.
Lukes
,
F.
Milota
,
O.
Bixner
,
H. F.
Kauffmann
, and
J.
Hauer
,
J. Phys. Chem. Lett.
3
,
1497
(
2012
).
38.
A.
Halpin
,
P. J. M.
Johnson
,
R.
Tempelaar
,
R. S.
Murphy
,
J.
Knoester
,
T.
Jansen
, and
R. J. D.
Miller
,
Nat. Chem.
6
,
196
(
2014
).
39.
M.
Kullmann
,
S.
Ruetzel
,
J.
Buback
,
P.
Nuernberger
, and
T.
Brixner
,
J. Am. Chem. Soc.
133
,
13074
(
2011
).
40.
O.
Bixner
,
V.
Lukes
,
T.
Mančal
,
J.
Hauer
,
F.
Milota
,
M.
Fischer
,
I.
Pugliesi
,
M.
Bradler
,
W.
Schmid
,
E.
Riedle
 et al,
J. Chem. Phys.
136
,
204503
(
2012
).
41.
K. W.
Stone
,
K.
Gundogdu
,
D. B.
Turner
,
X.
Li
,
S. T.
Cundiff
, and
K. A.
Nelson
,
Science
324
,
1169
(
2009
).
42.
G.
Nardin
,
T. M.
Autry
,
K. L.
Silverman
, and
S. T.
Cundiff
,
Opt. Express
21
,
28617
(
2013
).
43.
44.
M.
Kasha
,
H. R.
Rawls
, and
M. A.
El-Bayoumi
,
Pure Appl. Chem.
11
,
371
(
1965
).
45.
T.
Renger
and
V.
May
,
Phys. Rev. Lett.
78
,
3406
(
1997
).
46.
B.
Brüggemann
,
J. L.
Herek
,
V.
Sundström
,
T.
Pullerits
, and
V.
May
,
J. Phys. Chem. B
105
,
11391
(
2001
).
47.
V.
May
,
J. Chem. Phys.
140
,
054103
(
2014
).
48.
K.
Hader
,
V.
May
,
C.
Lambert
, and
V.
Engel
,
Phys. Chem. Chem. Phys.
18
,
13368
(
2016
).
49.
K.
Hader
,
C.
Consani
,
T.
Brixner
, and
V.
Engel
,
Phys. Chem. Chem. Phys.
19
,
31989
(
2017
).
50.
E. S.
Medvedev
and
V. I.
Osherov
,
Radiationless Transitions in Polyatomic Molecules
(
Springer
,
Berlin
,
1995
).
51.
M.
Keß
,
G.
Worth
, and
V.
Engel
,
J. Chem. Phys.
145
,
084305
(
2016
).
52.
J.
Wehner
and
V.
Engel
,
Phys. Chem. Chem. Phys.
18
,
32910
(
2016
).
53.
M.
Schröter
,
S.
Ivanov
,
J.
Schulze
,
S.
Polyutov
,
Y.
Yani
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
(
2015
).
54.
R. L.
Fulton
and
M.
Gouterman
,
J. Chem. Phys.
41
,
2280
(
1964
).
55.
B.
Engels
and
V.
Engel
,
Phys. Chem. Chem. Phys.
19
,
12604
(
2017
).
56.
R.
Tempelaar
,
T. L. C.
Jansen
, and
J.
Knoester
,
J. Phys. Chem. Lett.
8
,
6113
(
2017
).
57.
L.
Bruder
,
A.
Eisfeld
,
U.
Bangert
,
M.
Binz
,
M.
Jakob
,
D.
Uhl
,
M.
Schulz-Weiling
,
E. R.
Grant
, and
F.
Stienkemeier
,
Phys. Chem. Chem. Phys.
21
,
2276
(
2019
).
58.
K.
Mølmer
,
Y.
Castin
, and
J.
Dalibard
,
J. Opt. Soc. Am. B
10
,
524
(
1993
).
59.
D. E.
Makarov
and
H.
Metiu
,
J. Chem. Phys.
111
,
10126
(
1999
).
60.
J.
Albert
,
M.
Falge
,
M.
Keß
,
J.
Wehner
,
P.
Zhang
,
A.
Eisfeld
, and
V.
Engel
,
J. Chem. Phys.
142
,
212440
(
2015
).
61.
M.
Kasha
,
Faraday Discuss. Chem. Soc.
9
,
14
(
1950
).
62.
K.
Blum
,
Density Matrix Theory and Applications
, 3rd ed. (
Springer
,
Heidelberg
,
2012
).
63.
M.
Keß
and
V.
Engel
,
Chem. Phys. Lett.
650
,
41
(
2016
).
64.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
65.
W.
Domcke
and
G.
Stock
,
Adv. Chem. Phys.
100
,
1
(
1997
).
66.
67.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
Sausalito
,
2007
).
68.
P.
Kjellberg
,
B.
Brüggemann
, and
T.
Pullerits
,
Phys. Rev. B
74
,
024303
(
2006
).
69.
A.
Nemeth
,
F.
Milota
,
T.
Mančal
,
V.
Lukeš
,
J.
Hauer
,
H. F.
Kauffmann
, and
J.
Sperling
,
Chem. Phys. Lett.
459
,
94
(
2008
).
70.
T.
Mančal
,
A.
Nemeth
,
F.
Milota
,
V.
Lukeš
,
J.
Hauer
,
H. F.
Kauffmann
, and
J.
Sperling
,
J. Chem. Phys.
132
,
184514
(
2010
).
71.
D. B.
Turner
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
,
J. Phys. Chem. Lett.
2
,
1904
(
2011
).
72.
K.
Franstedt
and
G. S.
Engel
,
Chem. Phys.
403
,
59
(
2012
).
73.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
1203
(
2013
).
You do not currently have access to this content.