Classical atomistic simulations of biomolecules play an increasingly important role in molecular life science. The structure of current computing architectures favors methods that run multiple trajectories at once without requiring extensive communication between them. Many advanced sampling strategies in the field fit this mold. These approaches often rely on an adaptive logic and create ensembles of comparatively short trajectories whose starting points are not distributed according to the correct Boltzmann weights. This type of bias is notoriously difficult to remove, and Markov state models (MSMs) are one of the few strategies available for recovering the correct kinetics and thermodynamics from these ensembles of trajectories. In this contribution, we analyze the performance of MSMs in the thermodynamic reweighting task for a hierarchical set of systems. We show that MSMs can be rigorous tools to recover the correct equilibrium distribution for systems of sufficiently low dimensionality. This is conditional upon not tampering with local flux imbalances found in the data. For a real-world application, we find that a pure likelihood-based inference of the transition matrix produces the best results. The removal of the bias is incomplete, however, and for this system, all tested MSMs are outperformed by an alternative albeit less general approach rooted in the ideas of statistical resampling. We conclude by formulating some recommendations for how to address the reweighting issue in practice.

1.
A. J. G.
Cairns
,
D.
Blake
, and
K.
Dowd
,
J. Risk Insur.
73
,
687
(
2006
).
2.
L. R.
Rabiner
,
Proc. IEEE
77
,
257
(
1989
).
3.
S. R.
Eddy
,
Curr. Opin. Struct. Biol.
6
,
361
(
1996
).
4.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
124101
(
2009
).
5.
J. D.
Chodera
and
F.
Noé
,
Curr. Opin. Struct. Biol.
25
,
135
(
2014
).
6.
M.
Karplus
and
J. A.
McCammon
,
Nat. Struct. Biol.
9
,
646
(
2002
).
7.
A.
Berezhkovskii
,
G.
Hummer
, and
A.
Szabo
,
J. Chem. Phys.
130
,
205102
(
2009
).
8.
S. V.
Krivov
,
S.
Muff
,
A.
Caflisch
, and
M.
Karplus
,
J. Phys. Chem. B
112
,
8701
(
2008
).
9.
M.
Dibak
,
M. J.
del Razo
,
D.
De Sancho
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
48
,
214107
(
2018
).
10.
R.
Scalco
and
A.
Caflisch
,
J. Phys. Chem. B
115
,
6358
(
2011
).
11.
G. R.
Bowman
,
D. L.
Ensign
, and
V. S.
Pande
,
J. Chem. Theory Comput.
6
,
787
(
2010
).
12.
A. C.
Pan
,
D.
Sezer
, and
B.
Roux
,
J. Phys. Chem. B
112
,
3432
(
2008
).
13.
M.
Bacci
,
A.
Vitalis
, and
A.
Caflisch
,
Biochim. Biophys. Acta
1850
,
889
(
2015
).
14.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
15.
F.
Nüske
,
H.
Wu
,
J.-H.
Prinz
,
C.
Wehmeyer
,
C.
Clementi
, and
F.
Noé
,
J. Chem. Phys.
146
,
094104
(
2017
).
17.
S. V.
Krivov
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
13841
(
2008
).
18.
R. B.
Best
and
G.
Hummer
,
Phys. Rev. Lett.
96
,
228104
(
2006
).
19.
20.
V. I.
Manousiouthakis
and
M. W.
Deem
,
J. Chem. Phys.
110
,
2753
(
1999
).
21.
22.
R. M. L.
Evans
,
J. Phys. A: Math. Gen.
38
,
293
(
2005
).
23.
G. R.
Bowman
,
J. Chem. Phys.
137
,
134111
(
2012
).
24.
S.
Bacallado
,
J. D.
Chodera
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
045106
(
2009
).
25.
N.
Singhal
and
V. S.
Pande
,
J. Chem. Phys.
123
,
204909
(
2005
).
26.
N.-j.
Deng
,
W.
Zheng
,
E.
Gallicchio
, and
R. M.
Levy
,
J. Am. Chem. Soc.
133
,
9387
(
2011
).
27.
W.
Zheng
,
E.
Gallicchio
,
N.
Deng
,
M.
Andrec
, and
R. M.
Levy
,
J. Phys. Chem. B
115
,
1512
(
2011
).
28.
W.
Han
and
K.
Schulten
,
J. Am. Chem. Soc.
136
,
12450
(
2014
).
29.
W.
Zheng
,
M.
Andrec
,
E.
Gallicchio
, and
R. M.
Levy
,
J. Phys. Chem. B
113
,
11702
(
2009
).
30.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
135
,
074108
(
2011
).
31.
J. S.
Liu
,
A. F.
Neuwald
, and
C. E.
Lawrence
,
J. Am. Stat. Assoc.
90
,
1156
(
1995
).
32.
S. F.
Chen
and
J.
Goodman
,
Comput. Speech Lang.
13
,
359
(
1999
).
33.
B.
Trendelkamp-Schroer
and
F.
Noé
,
J. Chem. Phys.
138
,
164113
(
2013
).
34.
A.
Vitalis
and
A.
Caflisch
,
J. Chem. Theory Comput.
8
,
1108
(
2012
).
35.
N.
Blöchliger
,
A.
Vitalis
, and
A.
Caflisch
,
Comput. Phys. Commun.
184
,
2446
(
2013
).
36.
M.
Bacci
,
C.
Langini
,
J.
Vymětal
,
A.
Caflisch
, and
A.
Vitalis
,
J. Chem. Phys.
147
,
195102
(
2017
).
37.
M.
Bacci
,
J.
Vymětal
,
M.
Mihajlovic
,
A.
Caflisch
, and
A.
Vitalis
,
J. Chem. Theory Comput.
13
,
5117
(
2017
).
38.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
130
,
194101
(
2009
).
39.
M. I.
Zimmerman
and
G. R.
Bowman
,
J. Chem. Theory Comput.
11
,
5747
(
2015
).
40.
A.
Dickson
and
C. L.
Brooks
 III
,
J. Phys. Chem. B
118
,
3532
(
2014
).
41.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
(
1996
).
42.
F.
Cérou
and
A.
Guyader
,
Stoch. Anal. Appl.
25
,
417
(
2007
).
43.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
,
J. Chem. Phys.
132
,
054107
(
2010
).
44.
C.-E.
Brehier
,
M.
Gazeau
,
L.
Goudenege
,
T.
Lelievre
, and
M.
Rousset
,
Ann. Appl. Probab.
26
,
3559
(
2016
).
45.
D. J.
Lockhart
and
P. S.
Kim
,
Science
257
,
947
(
1992
).
46.
L. J.
Smith
,
X.
Daura
, and
W. F.
van Gunsteren
,
Proteins Struct. Funct. Bioinf.
48
,
487
(
2002
).
47.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
48.
R. H.
Swendsen
and
J. S.
Wang
,
Phys. Rev. Lett.
57
,
2607
(
1986
).
49.
A.
Vitalis
and
R. V.
Pappu
,
J. Chem. Phys.
141
,
034105
(
2014
).
50.
M.
Sarich
,
F.
Noé
, and
C.
Schütte
,
Multiscale Model. Simul.
8
,
1154
(
2010
).
51.
G.
Zhou
,
G. A.
Pantelopulos
,
S.
Mukherjee
, and
V. A.
Voelz
,
Biophys. J.
113
,
785
(
2017
).
52.
A.
Vitalis
,
N.
Lyle
, and
R. V.
Pappu
,
Biophys. J.
97
,
303
(
2009
).
53.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. L.
Swope
,
J. Chem. Phys.
126
,
155101
(
2009
).
54.
Y.
Yao
,
R. Z.
Cui
,
G. R.
Bowman
,
D.-A.
Silva
,
J.
Sun
, and
X.
Huang
,
J. Chem. Phys.
138
,
174106
(
2013
).
55.
B.
Fačkovec
,
E.
Vanden-Eijnden
, and
D. J.
Wales
,
J. Chem. Phys.
143
,
044119
(
2015
).
56.
R. T.
McGibbon
and
V. S.
Pande
,
J. Chem. Phys.
142
,
124105
(
2015
).
57.
P. G.
Bolhuis
,
C.
Dellago
,
D.
Chandler
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
58.
G.
Hummer
,
J. Chem. Phys.
120
,
516
(
2004
).
59.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
60.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
61.
E.
Guarnera
and
E.
Vanden-Eijnden
,
J. Chem. Phys.
145
,
024102
(
2016
).
62.
S.
Röblitz
and
M.
Weber
,
Adv. Data Anal. Classif.
7
,
147
(
2013
).
63.
P. V.
Banushkina
and
S. V.
Krivov
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
748
(
2016
).
64.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
65.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
66.
Y. M.
Rhee
and
V. S.
Pande
,
J. Phys. Chem. B
109
,
6780
(
2005
).

Supplementary Material

You do not currently have access to this content.