We present a first-principles molecular dynamics study of the effect of shock waves (SWs) propagating in a model biological medium. We find that the SW can cause chemical modifications through varied and complex mechanisms, in particular, phosphate-sugar and sugar-base bond breaks. In addition, the SW promotes the dissociation of water molecules, thus enhancing the ionic strength of the medium. Freed protons can hydrolyze base and sugar rings previously opened by the shock. However, many of these events are only temporary, and bonds reform rapidly. Irreversible damage is observed for pressures above 15-20 GPa. These results are important to gain a better understanding of the microscopic damage mechanisms underlying cosmic-ray irradiation in space and ion-beam cancer therapy.

1.
C.
von Sonntag
,
The Chemical Basis of Radiation Biology
(
Taylor and Francis
,
London
,
1987
).
2.
C.
von Sonntag
,
Radical Damage to DNA
(
Taylor and Francis
,
London
,
1995
).
3.
S.
Steenken
,
Chem. Rev.
89
,
503
(
1989
).
4.
W. A.
Bernhard
, in
Radical and Radical Ion Reactivity in Nucleic Acid Chemistry
, edited by
M.
Greenberg
(
Wiley
,
New York
,
2010
), pp.
41
68
.
5.
B.
Boudaïffa
,
P.
Cloutier
,
D.
Hunting
,
M. A.
Huels
, and
L.
Sanche
,
Science
287
,
1658
(
2000
).
6.
S. M.
Pimblott
and
J. A.
LaVerne
,
Radiat. Phys. Chem.
76
,
1244
(
2007
).
7.
E.
Scifoni
,
E.
Surdutovich
, and
A. V.
Solov’yov
,
Phys. Rev. E
81
,
021903
(
2010
).
8.
M.
Smyth
and
J.
Kohanoff
,
Phys. Rev. Lett.
106
,
238108
(
2011
).
9.
M.
Smyth
and
J.
Kohanoff
,
J. Am. Chem. Soc.
134
,
9122
(
2012
).
10.
B.
Gu
,
M.
Smyth
, and
J.
Kohanoff
,
Phys. Chem. Chem. Phys.
16
,
24350
(
2014
).
11.
M.
Smyth
,
J.
Kohanoff
, and
I.
Fabrikant
,
J. Chem. Phys.
140
,
184313
(
2014
).
12.
M.
McAllister
,
M.
Smyth
,
B.
Gu
,
G. A.
Tribello
, and
J.
Kohanoff
,
J. Phys. Chem. Lett.
6
,
3091
(
2015
).
13.
J.
Kohanoff
,
M.
McAllister
,
B.
Gu
, and
G. A.
Tribello
,
J. Phys.: Condens. Matter
29
,
383001
(
2017
), and references therein.
14.
Y.
Wu
,
C. J.
Mundy
,
M. E.
Colvin
, and
R.
Car
,
J. Phys. Chem. A
108
,
2922
(
2004
).
15.
M.
Toulemonde
,
E.
Surdutovich
, and
A. V.
Solov’yov
,
Phys. Rev. E
80
,
031913
(
2009
).
16.
E.
Surdutovich
and
A. V.
Solov’yov
,
Phys. Rev. E
82
,
051915
(
2010
).
17.
E.
Surdutovich
,
A. V.
Yakubovich
, and
A. V.
Solov’yov
,
Sci. Rep.
3
,
1289
(
2013
).
18.
O. I.
Obolensky
,
E.
Surdutovich
,
I.
Pshenichnov
,
I.
Mishustin
,
A. V.
Solov’yov
, and
W.
Greiner
,
Nucl. Instrum. Methods Phys. Res., Sect. B
266
,
1623
(
2008
).
19.
P.
de Vera
,
R.
García-Molina
,
I.
Abril
, and
A. V.
Solov’yov
,
Phys. Rev. Lett.
110
,
148104
(
2013
).
20.
E.
Surdutovich
and
A. V.
Solov’yov
,
Eur. Phys. J. D
68
,
353
(
2014
).
21.
E.
Surdutovich
and
A. V.
Solov’yov
,
Eur. Phys. J. D
69
,
193
(
2015
).
22.
L.
Landau
and
E.
Lifshitz
,
Fluid Dynamics
, 2nd ed. (
Reed-Elsevier
,
Oxford, Boston, Johannesburg
,
1987
), Vol. 6.
23.
Y.
Zel’dovich
and
Y.
Raiser
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Oxford Press
,
New York
,
1966
), Vol. 1.
24.
A.
Verkhovtsev
,
E.
Surdutovich
, and
A. V.
Solov’yov
,
Sci. Rep.
6
,
27654
(
2016
).
25.
P.
de Vera
,
N. J.
Mason
,
F. J.
Currell
, and
A. V.
Solov’yov
,
Eur. Phys. J. D
70
,
183
(
2016
).
26.
P.
de Vera
,
E.
Surdutovich
,
N. J.
Mason
, and
A. V.
Solov’yov
,
Eur. Phys. J. D
71
,
281
(
2017
).
27.
P.
de Vera
,
E.
Surdutovich
,
N. J.
Mason
,
F. J.
Currell
, and
A. V.
Solov’yov
,
Eur. Phys. J. D
72
,
147
(
2018
).
28.
H. A.
Bethe
 et al, “
Blast wave
,” Los Alamos Report No. LA-2000, Chap. 2, Los Alamos,
1947
.
29.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
201
,
159
(
1950
).
30.
L. I.
Sedov
,
Prokl. Mat. Mek.
10
,
241
(
1946
).
31.
J.
von Neumann
, “
The point source solution
,” in
Blast Wave
, edited by
K.
Fuchs
,
J. O.
Hirschfelder
,
J. L.
Magee
,
R.
Peierls
, and
J.
von Neumann
(
Los Alamos
,
1947
).
32.
P. O. K.
Krehl
, “
History of shock waves
,” in
Handbook of Shock Waves
, edited by
G.
Ben-Dor
,
O.
Igra
, and
T.
Elperin
(
Academic Press
,
San Diego
,
2001
), Vol. 1;
P. O. K.
Krehl
, “
History of shock waves, explosions and impact
,” in
A Chronological and Biographical Reference
(
Springer
,
Berlin, Heidelberg
,
2009
).
33.
Y. B.
Zel’dovich
,
Soviet Physics JETP
12
,
389
(
1942
).
34.
A. V.
Yakubovich
,
E.
Surdutovich
, and
A. V.
Solov’yov
,
AIP Conf. Proc.
1344
,
230
(
2011
).
35.
D.
Bottländer
,
C.
Mücksch
, and
H. M.
Urbassek
,
Nucl. Instrum. Methods Phys. Res., Sect. B
365
,
622
(
2015
).
36.
Nanoscale Insights into Ion-Beam Cancer Therapy
, edited by
A. V.
Solov’yov
(
Springer
,
Cham, Switzerland
,
2017
).
37.
R. H.
Cole
,
Underwater Explosions
(
Princeton University Press
,
NJ
,
1948
).
38.
R. T.
Knapp
,
J. W.
Daily
, and
F. G.
Hammit
,
Cavitation
(
McGraw-Hill
,
New York
,
1970
).
39.
A.
Vogel
,
W.
Lauterborn
, and
R.
Timm
,
J. Fluid Mech.
206
,
299
(
1989
).
40.
A.
Vogel
,
W.
Hentschel
,
J.
Holzfuss
, and
W.
Lauterborn
,
Ophthalmology
93
,
1259
(
1986
).
41.
A. J.
Coleman
and
J. E.
Saunders
,
Ultrasonics
31
,
75
(
1993
).
42.
43.
A.
Vogel
,
S.
Busch
,
K.
Jungnickel
, and
R.
Birngruber
,
Lasers Surg. Med.
15
,
32
(
1994
).
44.
R. O.
Esenaliev
,
A. A.
Oraevsky
,
V. S.
Letokhov
,
A. A.
Karabutov
, and
T. V.
Malinsky
,
Lasers Surg. Med.
13
,
470
(
1993
).
45.
H. G.
David
and
S. D.
Hamann
,
Trans. Faraday Soc.
55
,
72
(
1959
).
46.
S. D.
Hamann
and
M.
Linton
,
Trans. Faraday Soc.
62
,
2234
(
1966
);
S. D.
Hamann
and
M.
Linton
,
Trans. Faraday Soc.
65
,
2186
(
1969
).
47.
S. D.
Hamann
, in
Modern Aspects of Electrochemistry
, edited by
B. E.
Conway
and
J. O. M.
Bockris
(
Plenum
,
New York
,
1974
), No. 9, p.
126
.
48.
R.
Chau
,
A. C.
Mitchell
,
R. W.
Minich
, and
W. J.
Nellis
,
J. Chem. Phys.
114
,
1361
(
2001
).
49.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
50.
E.
Schwegler
,
G.
Galli
,
F.
Gygi
, and
R. Q.
Hood
,
Phys. Rev. Lett.
87
,
265501
(
2001
).
51.
N.
Goldman
 et al,
J. Chem. Phys.
130
,
124517
(
2009
).
52.
M.
French
,
S.
Hamel
, and
R.
Redmer
,
Phys. Rev. Lett.
107
,
185901
(
2011
).
53.
T.
Ikeda
,
Y.
Katayama
,
H.
Saitoh
, and
K.
Aoki
,
J. Chem. Phys.
132
,
121102
(
2010
).
54.
C. J.
Sahle
 et al,
Proc. Natl. Acad. Sci. U. S. A.
110
,
6301
(
2013
).
55.
J. G.
Blank
 et al,
Origins Life Evol. Biospheres
31
,
15
(
2001
).
56.
Y.
Furukawa
,
T.
Sekine
,
M.
Oba
,
T.
Kakegawa
, and
H.
Nakazawa
,
Nat. Geosci.
2
,
62
(
2009
).
57.
N.
Goldman
,
E. J.
Reed
,
L. E.
Fried
,
I.-F. W.
Kuo
, and
A.
Maiti
,
Nat. Chem.
2
,
949
(
2010
).
58.
Z.
Martins
,
M. C.
Price
,
N.
Goldman
,
M. A.
Sephton
, and
M. J.
Burchell
,
Nat. Geosci.
6
,
1045
(
2013
).
59.
J.
Gu
,
J.
Wang
, and
J.
Leszczynski
,
J. Am. Chem. Soc.
128
,
9322
(
2006
);
[PubMed]
J.
Gu
,
J.
Wang
, and
J.
Leszczynski
,
J. Nucleic Acids Res.
38
,
5280
(
2010
).
60.
T. G. A.
Youngs
,
J. Comput. Chem.
31
,
639
(
2009
).
61.
W.
Smith
,
C. W.
Yong
, and
P. M.
Rodger
,
Mol. Simul.
28
,
385
(
2002
).
62.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
63.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
); CP2K Developers Group Homepage, http://cp2k.berlios.de.
64.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
65.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
66.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
67.
J.
Simons
,
Acc. Chem. Res.
39
,
772
(
2006
).
68.
K.
Koshiyama
 et al,
Biophys. J.
91
,
2198
(
2006
).
69.
G. E.
Duvall
and
G. R.
Fowles
,
Shock Waves in High Pressure Physics and Chemistry
, edited by
R. S.
Bradley
(
Academic
,
San Diego
,
1963
), Vol. 2, pp.
209
291
.
70.
E. J.
Reed
,
L. E.
Fried
, and
J. D.
Joannopoulos
,
Phys. Rev. Lett.
90
,
235503
(
2003
).
71.
E. J.
Reed
,
L. E.
Fried
,
W. D.
Henshaw
, and
C. M.
Tarver
,
Phys. Rev. E
74
,
056706
(
2006
).
72.
T. R.
Mattson
and
M. P.
Desjarlais
,
Phys. Rev. Lett.
97
,
017801
(
2006
).
73.
V.
Rizzi
,
T. N.
Todorov
,
J.
Kohanoff
, and
A. A.
Correa
,
Phys. Rev. B
93
,
024306
(
2016
).
74.
E. J.
Reed
,
J. Phys. Chem. C
116
,
2205
(
2012
).
75.
R.
Ravelo
,
B. L.
Holian
,
T. C.
Germann
, and
P. S.
Lomdahl
,
Phys. Rev. B
70
,
014103
(
2004
).
76.

Notice that the presence of the nucleotide may change the compressibility of the medium at low pressures. It has to be taken into account that the experimental data are for pure water and our simulation cell contains a large molecule (33 atoms) that represents a non-negligible fraction of the total number of atoms in the simulation box (843) (4%).

77.
W. B.
Holzapfel
,
J. Chem. Phys.
50
,
4424
(
1969
).
78.
A. C.
Mitchell
and
W. J.
Nellis
,
J. Chem. Phys.
76
,
6273
(
1982
).
You do not currently have access to this content.