Colliding molecules behave fundamentally differently at high and low collision energies. At high energies, a collision can be described to a large extent using classical mechanics, and the scattering process can be compared to a billiard-ball-like collision. At low collision energies, the wave character of the collision partners dominates, and only quantum mechanics can predict the outcome of an encounter. It is, however, not so clear how these limits evolve into each other as a function of the collision energy. Here, we investigate and visualize this evolution using a special feature of the differential cross sections for inelastic collisions between NO radicals and He atoms. The so-called “parity-pair” transitions have similar differential cross sections at high collision energies, whereas their cross sections are significantly different in the quantum regime at low energies. These transitions can be used as a probe for the quantum nature of the collision process. The similarity of the parity-pair differential cross sections at high energies could be theoretically explained if the first-order Born approximation were applicable. We found, however, that the anisotropy of the NO–He interaction potential is too strong for the first-order Born approximation to be valid, so higher-order perturbations must be taken into account.

1.
J.
Weiner
,
V. S.
Bagnato
,
S.
Zilio
, and
P. S.
Julienne
,
Rev. Mod. Phys.
71
,
1
(
1999
).
2.
Cold Molecules: Theory, Experiment, Applications
, edited by
R.
Krems
,
W.
Stwalley
, and
B.
Friedrich
(
Taylor and Francis
,
2009
).
3.
M. T.
Bell
and
T. P.
Softley
,
Mol. Phys.
107
,
99
(
2009
).
4.
L.
Carr
,
D.
DeMille
,
R.
Krems
, and
J.
Ye
,
New J. Phys.
11
,
055049
(
2009
).
5.
M.
Schnell
and
G.
Meijer
,
Angew. Chem., Int. Ed.
48
,
6010
(
2009
).
6.
O.
Dulieu
,
R.
Krems
,
M.
Weidemuller
, and
S.
Willitsch
,
Phys. Chem. Chem. Phys.
13
,
18703
(
2011
).
7.
G.
Quéméner
and
P. S.
Julienne
,
Chem. Rev.
112
,
4949
(
2012
).
8.
E. S.
Shuman
,
J. F.
Barry
, and
D.
DeMille
,
Nature
467
,
820
(
2010
).
9.
A.
Fioretti
,
D.
Comparat
,
A.
Crubellier
,
O.
Dulieu
,
F.
Masnou-Seeuws
, and
P.
Pillet
,
Phys. Rev. Lett.
80
,
4402
(
1998
).
10.
T.
Takekoshi
,
B. M.
Patterson
, and
R. J.
Knize
,
Phys. Rev. Lett.
81
,
5105
(
1998
).
11.
J. M.
Doyle
,
B.
Friedrich
,
J.
Kim
, and
D.
Patterson
,
Phys. Rev. A
52
,
R2515
(
1995
).
12.
H. L.
Bethlem
,
G.
Berden
, and
G.
Meijer
,
Phys. Rev. Lett.
83
,
1558
(
1999
).
13.
R. V.
Krems
,
Phys. Chem. Chem. Phys.
10
,
4079
(
2008
).
14.
G.
Quéméner
,
N.
Balakrishnan
, and
A.
Dalgarno
, “
Inelastic collisions and chemical reactions of molecules at ultracold temperatures
,” in
Cold Molecules: Theory, Experiment, Applications
, edited by
R.
Krems
,
W.
Stwalley
, and
B.
Friedrich
(
Taylor and Francis
,
2009
), pp.
69
124
.
15.
A.
Gijsbertsen
,
H.
Linnartz
,
G.
Rus
,
A. E.
Wiskerke
,
S.
Stolte
,
D. W.
Chandler
, and
J.
Kłos
,
J. Chem. Phys.
123
,
224305
(
2005
).
16.
A.
Gijsbertsen
,
H.
Linnartz
,
C. A.
Taatjes
, and
S.
Stolte
,
J. Am. Chem. Soc.
128
,
8777
(
2006
).
17.
A.
Ballast
,
A.
Gijsbertsen
,
H.
Linnartz
, and
S.
Stolte
,
Mol. Phys.
106
,
315
(
2008
).
18.
J.
Kłos
,
F. J.
Aoiz
,
J. E.
Verdasco
,
M.
Brouard
,
S.
Marinakis
, and
S.
Stolte
,
J. Chem. Phys.
127
,
031102
(
2007
).
19.
C. J.
Eyles
,
M.
Brouard
,
H.
Chadwick
,
F. J.
Aoiz
,
J.
Kłos
,
A.
Gijsbertsen
,
X.
Zhang
, and
S.
Stolte
,
Phys. Chem. Chem. Phys.
14
,
5420
(
2012
).
20.
S. N.
Vogels
,
J.
Onvlee
,
S.
Chefdeville
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Science
350
,
787
(
2015
).
21.
J.
Kłos
,
G.
Chałasiński
,
M. T.
Berry
,
R.
Bukowski
, and
S. M.
Cybulski
,
J. Chem. Phys.
112
,
2195
(
2000
).
22.
B. R.
Johnson
,
NRCC Proc.
5
,
86
(
1979
).
23.
A.
von Zastrow
,
J.
Onvlee
,
S. N.
Vogels
,
G. C.
Groenenboom
,
A.
van der Avoird
, and
S. Y. T.
van de Meerakker
,
Nat. Chem.
6
,
216
(
2014
).
24.
M.
Born
,
Z. Phys.
38
,
803
(
1926
).
25.
F. J.
Aoiz
,
J. E.
Verdasco
,
M.
Brouard
,
J.
Kłos
,
S.
Marinakis
, and
S.
Stolte
,
J. Phys. Chem. A
113
,
14636
(
2009
).
26.
W. A.
Lester
, Jr.
, “
The N coupled-channel problem
,” in
Dynamics of Molecular Collisions, Part A
(
Plenum Press
,
New York, USA
,
1976
), pp.
1
32
.
27.
M. H.
Alexander
,
J. Chem. Phys.
76
,
5974
(
1982
).
28.
A.
Messiah
,
Quantum Mechanics Volume II
(
North Holland Publishing Company
,
1965
).
29.
J.
Onvlee
,
S. N.
Vogels
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
New J. Phys.
17
,
055019
(
2015
).
You do not currently have access to this content.