We present the design of a flexible quantum-chemical method development framework, which supports employing any type of basis function. This design has been implemented in the light-weight program package molsturm, yielding a basis-function-independent self-consistent field scheme. Versatile interfaces, making use of open standards like python, mediate the integration of molsturm with existing third-party packages. In this way, both rapid extension of the present set of methods for electronic structure calculations as well as adding new basis function types can be readily achieved. This makes molsturm well-suitable for testing novel approaches for discretising the electronic wave function and allows comparing them to existing methods using the same software stack. This is illustrated by two examples, an implementation of coupled-cluster doubles as well as a gradient-free geometry optimisation, where in both cases, arbitrary basis functions could be used. molsturm is open-sourced and can be obtained from http://molsturm.org.

1.
S. F.
Boys
,
Proc. R. Soc. London, Ser. A
200
,
542
(
1950
).
2.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
,
J. Chem. Phys.
51
,
2657
(
1969
).
3.
J. D.
Morgan
,
J. Phys. A: Math. Gen.
10
,
L91
(
1977
).
4.
F.
Jensen
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
273
(
2013
).
5.
J. G.
Hill
,
Int. J. Quantum Chem.
113
,
21
(
2013
).
6.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
7.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
8.
A.
Ma
,
M. D.
Towler
,
N. D.
Drummond
, and
R. J.
Needs
,
J. Chem. Phys.
122
,
224322
(
2005
).
9.
P.-F.
Loos
,
A.
Schemama
, and
M.
Caffarel
, “
Electron-nucleus cusp corrections for molecular orbitals
,” http://www.irsamc.ups-tlse.fr/loos/poster/o24.pdf,
2017
, cMMSE 2017.
12.
U. V.
Riss
and
H.-D.
Meyer
,
J. Phys. B: At., Mol. Opt. Phys.
26
,
4503
(
1993
).
13.
R.
Santra
and
L. S.
Cederbaum
,
Phys. Rep.
368
,
1
(
2002
).
14.
M.
Güell
,
J. M.
Luis
,
M.
Solà
, and
M.
Swart
,
J. Phys. Chem. A
112
,
6384
(
2008
).
15.
P. E.
Hoggan
, in
Self-Organization of Molecular Systems: From Molecules and Clusters to Nanotubes and Proteins
, edited by
N.
Russo
,
V. Y.
Antonchenko
, and
E. S.
Kryachko
(
Springer Netherlands
,
Dordrecht
,
2009
), pp.
199
219
.
16.
F.
Harris
and
H.
Michels
,
Adv. Chem. Phys.
13
,
205
(
1967
).
17.
E.
Steinborn
, in
Methods in Computational Molecular Physics
, edited by
G.
Dierksen
and
S.
Wilson
(
Reidel
,
1983
).
18.
E.
Weniger
and
E.
Steinborn
,
J. Chem. Phys.
78
,
6121
(
1983
).
19.
International Conference on ETO Multicenter Integrals
, edited by
C.
Weatherford
and
H.
Jones
(
Reidel
,
Dordrecht
,
1982
).
20.
H.
Shull
and
P.-O.
Löwdin
,
J. Chem. Phys.
30
,
617
(
1959
).
21.
M.
Rotenberg
, in
Advances in Atomic and Molecular Physics
, edited by
D.
Bates
and
I.
Esterrnan
(
Academic Press
,
1970
), Vol. 6, pp.
233
268
.
22.
A.
Vincenzo
,
C.
Andrea
, and
C.
Simonetta
,
Int. J. Quantum Chem.
92
,
99
(
2003
).
23.
C.
Coletti
,
D.
Calderini
, and
V.
Aquilanti
,
Adv. Quantum Chem.
67
,
73
(
2013
).
24.
D.
Calderini
,
S.
Cavalli
,
C.
Coletti
,
G.
Grossi
, and
V.
Aquilanti
,
J. Chem. Sci.
124
,
187
(
2012
).
25.
J. S.
Avery
and
J. E.
Avery
,
Mol. Phys.
110
,
1593
(
2012
).
26.
27.
J. E.
Avery
and
J. S.
Avery
,
Adv. Quantum Chem.
70
,
265
(
2015
).
28.
J. E.
Avery
and
J. S.
Avery
,
Adv. Quantum Chem.
76
,
133
(
2017
).
29.
V.
Aquilanti
,
S.
Cavalli
,
C.
Coletti
, and
G.
Grossi
,
Chem. Phys.
209
,
405
(
1996
).
30.
V.
Aquilanti
,
S.
Cavalli
, and
C.
Coletti
,
Chem. Phys.
214
,
1
(
1997
).
31.
V.
Aquilanti
,
S.
Cavalli
, and
C.
Coletti
,
Phys. Rev. Lett.
80
,
3209
(
1998
).
32.
J. S.
Avery
and
J. E.
Avery
,
Adv. Quantum Chem.
43
,
185
(
2003
).
33.
J. S.
Avery
,
J. E.
Avery
,
V.
Aquilanti
, and
A.
Caligiana
,
Adv. Quantum Chem.
47
,
157
(
2004
).
34.
J. E.
Avery
and
J. S.
Avery
,
Generalized Sturmians and Atomic Spectra
(
World Scientific
,
2006
).
35.
J. E.
Avery
and
J. S.
Avery
,
J. Math. Chem.
46
,
164
(
2009
).
36.
D.
Calderini
,
C.
Coletti
,
G.
Grossi
, and
V.
Aquilanti
, in
Computational Science and Its Applications—ICCSA 2013
, edited by
B.
Murgante
,
S.
Misra
,
M.
Carlini
,
C. M.
Torre
,
H.-Q.
Nguyen
,
D.
Taniar
,
B. O.
Apduhan
, and
O.
Gervasi
(
Springer
,
Berlin, Heidelberg
,
2013
), pp.
32
45
.
37.
A.
Abdouraman
,
A.
Frapiccini
,
A.
Hamido
,
F.
Mota-Furtado
,
P.
O’Mahony
,
D.
Mitnik
,
G.
Gasaneo
, and
B.
Piraux
,
J. Phys. B: At., Mol. Opt. Phys.
49
,
235005
(
2016
).
38.
J. S.
Avery
,
Hyperspherical Harmonics: Applications in Quantum Theory
(
Springer
,
1989
).
39.
V.
Aquilanti
and
S.
Cavalli
, in
Few-Body Problems in Physics
, edited by
C.
Ciofi degli Atti
,
E.
Pace
,
G.
Salmè
, and
S.
Simula
(
Springer Vienna
,
Vienna
,
1992
), pp.
573
580
.
40.
V.
Aquilanti
,
A.
Lombardi
, and
R. G.
Littlejohn
,
Theor. Chem. Acc.
111
,
400
(
2004
).
41.
J. E.
Avery
and
J. S.
Avery
,
Hyperspherical Harmonics and Their Physical Applications
(
World Scientific
,
2018
).
42.
T. K.
Das
,
Hyperspherical Harmonics Expansion Techniques
(
Springer
,
2016
).
43.
J. M.
Randazzo
,
L. U.
Ancarani
,
G.
Gasaneo
,
A. L.
Frapiccini
, and
F. D.
Colavecchia
,
Phys. Rev. A
81
,
042520
(
2010
).
44.
D. M.
Mitnik
,
F. D.
Colavecchia
,
G.
Gasaneo
, and
J. M.
Randazzo
,
Comput. Phys. Commun.
182
,
1145
(
2011
).
45.
J. M.
Randazzo
,
D.
Mitnik
,
G.
Gasaneo
,
L. U.
Ancarani
, and
F. D.
Colavecchia
,
Eur. Phys. J. D
69
,
189
(
2015
).
46.
C. M.
Granados-Castro
,
L. U.
Ancarani
,
G.
Gasaneo
, and
D. M.
Mitnik
,
Adv. Quantum Chem.
73
,
3
(
2016
).
47.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
48.
L.
Frediani
and
D.
Sundholm
,
Phys. Chem. Chem. Phys.
17
,
31357
(
2015
).
49.
E.
Tsuchida
and
M.
Tsukada
,
Phys. Rev. B
52
,
5573
(
1995
).
50.
L.
Lehtovaara
,
V.
Havu
, and
M.
Puska
,
J. Chem. Phys.
131
,
054103
(
2009
).
51.
R.
Alizadegan
,
K. J.
Hsia
, and
T. J.
Martinez
,
J. Chem. Phys.
132
,
034101
(
2010
).
52.
J. E.
Avery
, “
New computational methods in the quantum theory of nano-structures
,” Ph.D. thesis,
University of Copenhagen
,
2011
.
53.
D.
Davydov
,
T. D.
Young
, and
P.
Steinmann
,
Int. J. Numer. Methods Eng.
106
,
863
(
2015
).
54.
N. M.
Boffi
,
M.
Jain
, and
A.
Natan
,
J. Chem. Theory Comput.
12
,
3614
(
2016
).
55.
F. A.
Bischoff
and
E. F.
Valeev
,
J. Chem. Phys.
134
,
104104
(
2011
).
56.
F. A.
Bischoff
,
R. J.
Harrison
, and
E. F.
Valeev
,
J. Chem. Phys.
137
,
104103
(
2012
).
57.
F. A.
Bischoff
and
E. F.
Valeev
,
J. Chem. Phys.
139
,
114106
(
2013
).
58.
F. A.
Bischoff
,
J. Chem. Phys.
141
,
184106
(
2014
).
59.
F. A.
Bischoff
,
J. Chem. Phys.
141
,
184105
(
2014
).
60.
F. A.
Bischoff
,
J. Chem. Phys.
146
,
124126
(
2017
).
61.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P. L.
Ríos
,
J. Phys.: Condens. Matter
22
,
023201
(
2010
).
62.
J.
Kim
,
K. P.
Esler
,
J.
McMinis
,
M. A.
Morales
,
B. K.
Clark
,
L.
Shulenburger
, and
D. M.
Ceperley
,
J. Phys.: Conf. Ser.
402
,
012008
(
2012
).
63.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
64.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
,
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
65.
J. J.
Mortensen
,
L. B.
Hansen
, and
K. W.
Jacobsen
,
Phys. Rev. B
71
,
035109
(
2005
).
66.
J.
Enkovaara
,
C.
Rostgaard
,
J. J.
Mortensen
,
J.
Chen
,
M.
Dułak
,
L.
Ferrighi
,
J.
Gavnholt
,
C.
Glinsvad
,
V.
Haikola
,
H. A.
Hansen
,
H. H.
Kristoffersen
,
M.
Kuisma
,
A. H.
Larsen
,
L.
Lehtovaara
,
M.
Ljungberg
,
O.
Lopez-Acevedo
,
P. G.
Moses
,
J.
Ojanen
,
T.
Olsen
,
V.
Petzold
,
N. A.
Romero
,
J.
Stausholm-Møller
,
M.
Strange
,
G. A.
Tritsaris
,
M.
Vanin
,
M.
Walter
,
B.
Hammer
,
H.
Häkkinen
,
G. K. H.
Madsen
,
R. M.
Nieminen
,
J. K.
Nørskov
,
M.
Puska
,
T. T.
Rantala
,
J.
Schiøtz
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
J. Phys.: Condens. Matter
22
,
253202
(
2010
).
67.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2017
).
68.
N. M.
O’boyle
,
A. L.
Tenderholt
, and
K. M.
Langner
,
J. Comput. Chem.
29
,
839
(
2008
).
69.
T.
Verstraelen
,
P.
Tecmer
,
F.
Heidar-Zadeh
,
C. E.
González-Espinoza
,
M.
Chan
,
T. D.
Kim
,
K.
Boguslawski
,
S.
Fias
,
S.
Vandenbrande
,
D.
Berrocal
, and
P. W.
Ayers
, Horton 2.1.0,
2017
.
70.
R.
Muller
, “
Pyquante: Python quantum chemistry
,” http://pyquante.sourceforge.net; accessed 26 November 2017.
71.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
13
,
3185
(
2017
).
72.
D. G. A.
Smith
,
L. A.
Burns
,
D. A.
Sirianni
,
D. R.
Nascimento
,
A.
Kumar
,
A. M.
James
,
J. B.
Schriber
,
T.
Zhang
,
B.
Zhang
,
A. S.
Abbott
,
E. J.
Berquist
,
M. H.
Lechner
,
L. A.
Cunha
,
A. G.
Heide
,
J. M.
Waldrop
,
T. Y.
Takeshita
,
A.
Alenaizan
,
D.
Neuhauser
,
R. A.
King
,
A. C.
Simmonett
,
J. M.
Turney
,
H. F.
Schaefer
,
F. A.
Evangelista
,
A. E.
DePrince
,
T. D.
Crawford
,
K.
Patkowski
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
14
,
3504
(
2018
).
73.
S.
van der Walt
,
S. C.
Colbert
, and
G.
Varoquaux
,
Comput. Sci. Eng.
13
,
22
(
2011
).
74.
The HDF Group,
HDF5 Reference Manual
(
The HDF Group
,
2011
), release 1.8.8.
75.
M. F.
Herbst
, “
Development of a modular quantum-chemistry framework for the investigation of novel basis functions
,” Ph.D. thesis,
Ruprecht-Karls-Universität Heidelberg
,
2018
, https://michael-herbst.com/publications/2018.05_phd_corrected.pdf.
76.
B.
Sutcliffe
,
E.
Cancès
,
M.
Caffarel
,
R.
Assaraf
,
G.
Turinici
,
I.
Catto
,
P.-L.
Lions
,
C. L.
Bris
,
O.
Bokanowski
,
B.
Grébert
,
N. J.
Mauser
,
X.
Blanc
,
M.
Defranceschi
,
V.
Louis-Achille
,
B.
Mennucci
,
J.
Dolbeault
,
M. J.
Esteban
,
E.
Séré
,
T.
Saue
, and
H. J. A.
Jensen
, in
Mathematical Models and Methods for Ab Initio Quantum Chemistry
, Lecture Notes in Chemistry, edited by
M.
Defranceschi
and
C. L.
Bris
(
Springer-Verlag
,
2000
), Vol. 74.
77.
E.
Cancès
and
C.
Le Bris
,
Int. J. Quantum Chem.
79
,
82
(
2000
).
78.
E.
Cancès
and
C.
Le Bris
,
ESAIM: Math. Modell. Numer. Anal.
34
,
749
(
2000
).
79.
R.
McWeeny
,
Proc. R. Soc. A
235
,
496
(
1956
).
80.
A.
Igawa
and
H.
Fukutome
,
Prog. Theor. Phys.
54
,
1266
(
1975
).
81.
R.
Seeger
and
J. A.
Pople
,
J. Chem. Phys.
65
,
265
(
1976
).
82.
T.
van Voorhis
and
M.
Head-Gordon
,
Mol. Phys.
100
,
1713
(
2002
).
83.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
84.
V. R.
Saunders
and
I. H.
Hillier
,
Int. J. Quantum Chem.
7
,
699
(
1973
).
85.
86.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
87.
F.
Jensen
,
J. Phys. Chem. A
111
,
11198
(
2007
).
88.
C.
Großmann
and
H.-G.
Roos
,
Numerik Partieller Differentialgleichungen
, Teubner Studienbücher Mathematik, 2nd ed. (
Vieweg+Teubner Verlag
,
1992
).
89.
S. C.
Brenner
and
L. R.
Scott
,
The Mathematical Theory of Finite Element Methods
, 3rd ed. (
Springer-Verlag
,
2008
).
90.
W. E.
Arnoldi
,
Q. Appl. Math.
9
,
17
(
1951
).
91.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
92.
M.
Kronbichler
and
K.
Kormann
,
Comput. Fluids
63
,
135
(
2012
).
93.
M.
Wormit
, “
Development and application of reliable methods for the calculation of excited states: From light-harvesting complexes to medium-sized molecules
,” Ph.D. thesis,
Universität Frankfurt
,
2009
.
94.
M.
Wormit
,
D. R.
Rehn
,
P. H.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
,
Mol. Phys.
112
,
774
(
2014
).
95.
A.
Dreuw
and
M.
Wormit
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
(
2014
).
96.
T.
Helgaker
,
J.
Olsen
, and
P.
Jorgensen
,
Molecular Electronic-Structure Theory
, 1st ed. (
Wiley
,
2013
).
97.
Latency numbers every programmer should know, https://gist.github.com/hellerbarde/2843375; accessed 08 February
2018
.
98.
D.
Cheney
, Five things that make Go fast, Presentation at Gocon2014, Tokyo, Japan,
2014
.
99.
Y.
Saad
,
Iterative Methods for Sparse Linear Systems
, 2nd ed., edited by
Y.
Saad
(
SIAM Publishing
,
2003
).
100.
P.
Arbenz
, Lecture notes on solving large scale eigenvalue problems, Lecture Notes, ETH Zürich,
2010
.
101.
Y.
Saad
,
Numerical Methods for Large Eigenvalue Problems
, 2nd ed. (
SIAM Publishing
,
2011
).
102.
P.
Hudak
,
ACM Comput. Surv.
21
,
359
(
1989
).
103.
A.
Buluç
,
J. T.
Fineman
,
M.
Frigo
,
J. R.
Gilbert
, and
C. E.
Leiserson
, in
Symposium on Parallelism in Algorithms and Architectures (SPAA)
(
ACM
,
2009
), pp.
233
244
.
104.
J.
Hughes
, in
Research Topics in Functional Programming
(
Addison-Wesley
,
1990
), Chap. 2, pp.
17
42
.
105.
Q.
Sun
,
J. Comput. Chem.
36
,
1664
(
2015
).
106.
J. D.
Hunter
,
Comput. Sci. Eng.
9
,
90
(
2007
).
107.
E.
Jones
,
T.
Oliphant
,
P.
Peterson
 et al, SciPy: Open source scientific tools for Python (2001–); accessed 09 March
2017.
108.
W.
McKinney
,
J.
Reback
 et al, PANDAS: Python data analysis library (2008–); accessed 09 March 2017.
109.
F.
Pérez
and
B. E.
Granger
,
Comput. Sci. Eng.
9
,
21
(
2007
).
110.
O.
Ben-Kiki
,
C.
Evans
, and
I.
döt Net
, YAML Ain’t markup language (YAML) version 1.2, http://www.yaml.org/spec/1.2/spec.html (2009), accessed 03 December
2017
.
111.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
112.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
,
J. Chem. Phys.
111
,
9982
(
1999
).
113.
D.
Beazley
,
L.
Ballabio
,
W.
Fulton
,
M.
Gossage
,
M.
Köppe
,
J.
Lenz
,
M.
Matus
,
J.
Stewart
,
A.
Yerkes
,
S.
Yoshiki
,
S.
Singhi
,
X.
Delacour
,
O.
Betts
, and
D. Z.
Gang
, SWIG: Simplified wrapper and interface generator, accessed 09 March
2018
.
114.
R. J.
Bartlett
and
G. D.
Purvis
,
Int. J. Quantum Chem.
14
,
561
(
1978
).
115.
A. C.
Hurley
,
Electron Correlation in Small Molecules
(
Academic Press
,
London, New York
,
1976
).
116.
M. F.
Herbst
and
J. E.
Avery
, https://molsturm.org.
117.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
118.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
119.
M. J. D.
Powell
,
Comput. J.
7
,
155
(
1964
).
120.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes
(
Cambridge University Press
,
1992
).
121.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
122.
E. F.
Valeev
, Libint: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions, http://libint.valeyev.net (2017), version 2.3.1.
123.
E.
Valeyev
,
J.
Calvin
,
D.
Lewis
,
J.
Dullea
,
C.
Peng
,
K.
Nishimra
,
J. T.
Fermann
,
J. D.
Whitfield
,
O.
Čertík
,
M. F.
Herbst
,
S. Y.
Willow
, and
D.
Williams-Young
, evaleev/libint: 2.3.1,
2017
.
124.
J. E.
Avery
and
M. F.
Herbst
, https://molsturm.org/sturmint.
125.
S.
Lehtola
,
C.
Steigemann
,
M. J.
Oliveira
, and
M. A.
Marques
,
SoftwareX
7
,
1
(
2018
).
126.
U.
Ekström
,
R.
Bast
,
S. S.
Reine
,
C.
Jacob
,
J.
Juselius
,
E.
Rebolini
,
R. D.
Remigio
,
A. S. P.
Gomes
,
S.
Reimann
,
A.
Borgoo
,
M.
Ilias
, and
yurivict
, Xcfun DFT library, http://dftlibs.org/xcfun; accessed 11 June
2018
.
127.
G.
Baumgartner
,
A.
Auer
,
D.
Bernholdt
,
A.
Bibireata
,
V.
Choppella
,
D.
Cociorva
,
X, R. H.
Gao
,
S.
Hirata
,
S.
Krishnamoorthy
,
S.
Krishnan
,
C.
Lam
,
Q.
Lu
,
M.
Nooijen
,
R.
Pitzer
,
J.
Ramanujam
,
P.
Sadayappan
, and
A.
Sibiryakov
,
Proc. IEEE
93
,
276
292
(
2005
).
128.
E.
Solomonik
,
D.
Matthews
,
J.
Hammond
,
J.
Stanton
, and
J.
Demmel
,
J. Parallel Distrib. Comput.
74
,
3176
(
2014
).
129.
E.
Peise
,
D.
Fabregat-Traver
, and
P.
Bientinesi
, in
High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation
, edited by
S. A.
Jarvis
,
S. A.
Wright
, and
S. D.
Hammond
(
Springer-Verlag
,
Cham
,
2015
), pp.
193
212
.
130.
J. A.
Calvin
,
C. A.
Lewis
, and
E. F.
Valeev
, in
Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms, IA3 ’15
(
ACM
,
New York, NY, USA
,
2015
), pp.
4-1
4-8
.
131.
B.
Huber
and
S.
Wolf
, Xerus—A general purpose tensor library, https://libxerus.org (2014–2017); accessed 10 March
2018
.
132.
M. R. B.
Kristensen
,
S. A. F.
Lund
,
T.
Blum
, and
J. E.
Avery
, in
Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, PACT 16
(
ACM
,
2016
), pp.
71
85
.
133.
M. R. B.
Kristensen
,
J. E.
Avery
,
T.
Blum
,
S. A. F.
Lund
, and
B.
Vinter
, in
International Conference on High Performance Computing
(
Springer
,
2016
), Vol. 9945.
134.
E.
Epifanovsky
,
M.
Wormit
,
T.
Kuś
,
A.
Landau
,
D.
Zuev
,
K.
Khistyaev
,
P.
Manohar
,
I.
Kaliman
,
A.
Dreuw
, and
A. I.
Krylov
,
J. Comput. Chem.
34
,
2293
(
2013
).
You do not currently have access to this content.