We apply a statistical mechanical theory on clathrate hydrates to an exploration of the phase behaviors of hydrocarbon and noble gas clathrate hydrates. Two- and three-phase coexisting conditions in the whole space of thermodynamic variables (temperature, pressure, and composition) are evaluated only from intermolecular interactions for water and guest species. The occupancy of guest molecules in various types of cages is also calculated. We find that a small difference in the guest size gives rise to a rich variety of phase behaviors, notably for the shape of the two-phase boundary and the occupancy. Ethane clathrate hydrate is found to exhibit the most drastic and intriguing features in various properties arising from its non-stoichiometry. We investigate the phase behaviors of clathrate hydrate in terms of the partial molar quantities derived from the chemical potentials of guest and water. Our method also allows exploring the aqueous solution of an apolar guest molecule in the low temperature and high pressure regime coexisting with the corresponding clathrate hydrate for which the free guest fluid phase is substituted at high temperatures. It is shown that the temperature dependence of methane solubility in liquid water in the presence of clathrate hydrate is opposite to that being in equilibrium with the methane fluid without clathrate hydrate. This phenomenon is elucidated by a substantial decrease in the chemical potential of methane from the hydrate/guest boundary to the hydrate/water.

1.
D. W.
Davidson
,
Water—A Comprehensive Treatise
(
Plenum
,
New York
,
1973
), Vol. 2.
2.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
(
CPC Press
,
Boca Raton
,
2008
).
3.
M.
Matsumoto
and
H.
Tanaka
,
J. Phys. Chem. B
115
,
8257
(
2011
).
4.
J. H.
van der Waals
and
J. C.
Platteeuw
,
Adv. Chem. Phys.
2
,
1
(
1959
).
5.
H.
Tanaka
and
M.
Matsumoto
,
Adv. Chem. Phys.
152
,
421
(
2013
).
6.
H.
Tanaka
and
K.
Kiyohara
,
J. Chem. Phys.
98
,
4098
(
1993
).
7.
H.
Tanaka
and
K.
Kiyohara
,
J. Chem. Phys.
98
,
8110
(
1993
).
8.
H.
Tanaka
,
J. Chem. Phys.
101
,
10833
(
1994
).
9.
H.
Tanaka
,
T.
Nakatsuka
, and
K.
Koga
,
J. Chem. Phys.
121
,
5488
(
2004
).
10.
H.
Tanaka
and
M.
Matsumoto
,
J. Phys. Chem. B
115
,
14256
(
2011
).
11.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
Phys. Rev. B
93
,
054118
(
2016
).
12.
S. R.
Zele
,
S. Y.
Lee
, and
G. D.
Holder
,
J. Phys. Chem. B
103
,
10250
(
1999
).
13.
S. J.
Wierzchowski
and
P. A.
Monson
,
Ind. Eng. Chem. Res.
45
,
424
(
2006
).
14.
S. J.
Wierzchowski
and
P. A.
Monson
,
J. Phys. Chem. B
111
,
7274
(
2007
).
15.
H.
Tanaka
,
T.
Yagasaki
, and
M.
Matsumoto
,
J. Phys. Chem. B
122
,
297
(
2018
).
16.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
17.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
18.
F.
Franks
,
Water—A Comprehensive Treatise
(
Plenum
,
New York
,
1973
), Vol. 2.
19.
B.
Guillot
,
Y.
Guissani
, and
S.
Bratos
,
J. Chem. Phys.
95
,
3643
(
1991
).
20.
H.
Tanaka
and
K.
Nakanishi
,
J. Chem. Phys.
95
,
3719
(
1991
).
21.
B.
Guillot
and
Y.
Guissani
,
J. Chem. Phys.
99
,
8075
(
1993
).
22.
A.
Ben-Naim
,
Molecular Theory of Water and Aqueous Solutions
(
World Scientific
,
Singapore
,
2009
).
23.
O. Y.
Zatsepina
and
B. A.
Buffett
,
Geophys. Res. Lett.
24
,
1567
, https://doi.org/10.1029/97gl01599 (
1997
).
24.
P.
Servio
and
P.
Englezos
,
J. Chem. Eng. Data
47
,
87
(
2002
).
25.
J. S.
Tse
and
M. L.
Klein
,
J. Phys. Chem.
91
,
5789
(
1987
).
26.
R.
Radhakrishnan
and
B. L.
Trout
,
J. Chem. Phys.
117
,
1786
(
2002
).
27.
C.
Moon
,
P. C.
Taylor
, and
P. M.
Rodger
,
J. Am. Chem. Soc.
125
,
4706
(
2003
).
28.
N. J.
English
,
J. K.
Johnson
, and
C. E.
Taylor
,
J. Chem. Phys.
123
,
244503
(
2005
).
29.
S.
Alavi
and
J. A.
Ripmeester
,
Angew. Chem.
119
,
6214
(
2007
).
30.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
,
Science
326
,
1095
(
2009
).
31.
J.
Bai
,
C. A.
Angell
, and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
5718
(
2010
).
32.
M. M.
Conde
and
C.
Vega
,
J. Chem. Phys.
133
,
064507
(
2010
).
33.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
,
J. Am. Chem. Soc.
132
,
11806
(
2010
).
34.
J.
Vatamanu
and
P. G.
Kusalik
,
Phys. Chem. Chem. Phys.
12
,
15065
(
2010
).
35.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
,
J. Phys. Chem. C
115
,
21241
(
2011
).
36.
Y.
Bi
and
T.
Li
,
J. Phys. Chem. B
118
,
13324
(
2014
).
37.
T.
Yagasaki
,
M.
Matsumoto
,
Y.
Andoh
,
S.
Okazaki
, and
H.
Tanaka
,
J. Phys. Chem. B
118
,
1900
(
2014
).
38.
J.-Y.
Wu
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
,
J. Phys. Chem. C
119
,
1400
(
2015
).
39.
Z.
Zhang
,
M. R.
Walsh
, and
G. J.
Guo
,
Phys. Chem. Chem. Phys.
17
,
8870
(
2015
).
40.
Z.
He
,
K. M.
Gupta
,
P.
Linga
, and
J.
Jiang
,
J. Phys. Chem. C
120
,
25225
(
2016
).
41.
Y.
Huang
,
C.
Zhu
,
L.
Wang
,
X.
Cao
,
Y.
Su
,
X.
Jiang
,
S.
Meng
,
J.
Zhao
, and
X. C.
Zeng
,
Sci. Adv.
2
,
e1501010
(
2016
).
42.
T.
Matsui
,
M.
Hirata
,
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Chem. Phys.
147
,
091101
(
2017
).
43.
K.
Katsumasa
,
K.
Koga
, and
H.
Tanaka
,
J. Chem. Phys.
127
,
044509
(
2007
).
44.
N. I.
Papadimitriou
,
I. N.
Tsimpanogiannis
,
A. T.
Papaioannou
, and
A. K.
Stubos
,
J. Phys. Chem. C
112
,
10294
(
2008
).
45.
N. I.
Papadimitriou
,
I. N.
Tsimpanogiannis
,
C. J.
Peters
,
A. T.
Papaioannou
, and
A. K.
Stubos
,
J. Phys. Chem. B
112
,
14206
(
2008
).
46.
L.
Hakim
,
K.
Koga
, and
H.
Tanaka
,
Phys. Rev. Lett.
104
,
115701
(
2010
).
47.
T.
Nakayama
,
K.
Koga
, and
H.
Tanaka
,
J. Chem. Phys.
131
,
214506
(
2009
).
48.
F.
Sebastianelli
,
M.
Xu
,
D. K.
Kanan
, and
Z.
Bačić
,
J. Phys. Chem. A
111
,
6115
(
2007
).
49.
A.
Witt
,
F.
Sebastianelli
,
M. E.
Tuckerman
, and
Z.
Bačić
,
J. Phys. Chem. C
114
,
20775
(
2010
).
50.
X.
Cao
,
Y.
Su
, and
J.
Zhao
,
J. Phys. Chem. A
119
,
7063
(
2015
).
51.
J. I.
Lunine
and
D. J.
Stevenson
,
Astrophys. J. Suppl. Ser.
58
,
493
(
1985
).
52.
M.
Rubin
,
K.
Altwegg
,
H.
Balsiger
,
A.
Bar-Nun
,
J.-J.
Berthelier
,
A.
Bieler
,
P.
Bochsler
,
C.
Briois
,
U.
Calmonte
,
M.
Combi
,
J.
De Keyser
,
F.
Dhooghe
,
P.
Eberhardt
,
B.
Fiethe
,
S. A.
Fuselier
,
S.
Gasc
,
T. I.
Gombosi
,
K. C.
Hansen
,
M.
Hässig
,
A.
Jäckel
,
E.
Kopp
,
A.
Korth
,
L.
Le Roy
,
U.
Mall
,
B.
Marty
,
O.
Mousis
,
T.
Owen
,
H.
Rème
,
T.
Sémon
,
C.-Y.
Tzou
,
J. H.
Waite
, and
P.
Wurz
,
Science
348
,
232
(
2015
).
53.
CRC Handbook of Chemistry and Physics
, 89 ed., edited by
D. R.
Lide
(
CRC Press
,
Boca Raton
,
2008
).
54.
O.
Redlich
and
J. N. S.
Kwong
,
Chem. Rev.
44
,
233
(
1949
).
55.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
56.
L.
Pauling
,
J. Am. Chem. Soc.
57
,
2680
(
1935
).
57.
H.
Tanaka
,
J. Chem. Phys.
108
,
4887
(
1998
).
58.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
J. Comput. Chem.
39
,
61
(
2018
).
59.
S.
Nose
,
J. Chem. Phys.
81
,
511
(
1984
).
60.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
61.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
62.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
63.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
64.
Y.
Koyama
,
H.
Tanaka
,
G.
Gao
, and
X. C.
Zeng
,
J. Chem. Phys.
121
,
7926
(
2004
).
65.
Y.
Koyama
,
H.
Tanaka
, and
K.
Koga
,
J. Chem. Phys.
122
,
074503
(
2005
).
66.
M. W.
Deaton
and
E. M.
Frost
,
U.S. Bur. Mines Monogr.
8
,
1
(
1946
).
67.
J. L.
De Roo
,
C. J.
Peters
,
R. N.
Lichtenthaler
, and
G. A. M.
Diepen
,
AlChE J.
29
,
651
(
1983
).
68.
S.
Nakano
,
M.
Moritoki
, and
K.
Ohgaki
,
J. Chem. Eng. Data
44
,
254
(
1999
).
69.
T.
Nakamura
,
T.
Makino
,
T.
Sugahara
, and
K.
Ohgaki
,
Chem. Eng. Sci.
58
,
269
(
2003
).
70.
A. H.
Mohammadi
,
R.
Anderson
, and
B.
Tohidi
,
AlChE J.
51
,
2825
(
2005
).
71.
O. L.
Roberts
,
E. R.
Brownscombe
, and
L. S.
Howe
,
Oil Gas J.
39
,
37
(
1940
).
72.
G. D.
Holder
and
G. C.
Grigoriou
,
J. Chem. Thermodyn.
12
,
1093
(
1980
).
73.
G. D.
Holder
and
J. H.
Hand
,
AlChE J.
28
,
440
(
1982
).
74.
K.
Morita
,
S.
Nakano
, and
K.
Ohgaki
,
Fluid Phase Equilib.
169
,
167
(
2000
).
75.
B.
Miller
and
E. R.
Strong
,
Am. Gas Assoc. Monthly
28
,
63
(
1946
).
76.
H.
Kubota
,
K.
Shimizu
,
Y.
Tanaka
, and
T.
Makita
,
J. Chem. Eng. Jpn.
17
,
423
(
1984
).
77.
K.
Sugahara
,
T.
Sugahara
, and
K.
Ohgaki
,
J. Chem. Eng. Data
50
,
274
(
2005
).
78.
A. H.
Mohammadi
and
D.
Richon
,
Ind. Eng. Chem. Res.
50
,
11452
(
2011
).
79.
Y. A.
Dyadin
,
E. G.
Larionov
,
D. S.
Mirinskij
,
T. V.
Mikina
,
E. Y.
Aladko
, and
L. I.
Starostina
,
J. Inclusion Phenom. Mol. Recognit. Chem.
28
,
271
(
1997
).
80.
K. A.
Udachin
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
J. Supramol. Chem.
2
,
405
(
2002
).
81.
M. T.
Kirchner
,
R.
Boese
,
W. E.
Billups
, and
L. R.
Norman
,
J. Am. Chem. Soc.
126
,
9407
(
2004
).
82.
A.
Pohorille
and
L. R.
Pratt
,
J. Am. Chem. Soc.
112
,
5066
(
1990
).
83.
L. R.
Pratt
and
A.
Pohorille
,
Proc. Natl. Acad. Sci. U. S. A.
89
,
2995
(
1992
).
You do not currently have access to this content.