In this study, we perform a systematic search to find the possible lowest energy structure of silicon nanoclusters Sin (n = 8-80) by means of an evolutionary algorithm. The fitness function for this search is the total energy of density functional tight binding (DFTB). To be on firm ground, we take several low energy structures of DFTB and perform further geometrical optimization by density functional theory (DFT). Then we choose structures with the lowest DFT total energy and compare them with the reported lowest energy structures in the literature. In our search, we found several lowest energy structures that were previously unreported. We further observe a geometrical transition at n = 27 from elongated to globular structures. In addition, the optical gap of the lowest energy structures is investigated by time-dependent DFTB (TD-DFTB) and time-dependent DFT (TD-DFT). The results show the same trend in TD-DFTB and TD-DFT for the optical gap. We also find a sudden drop in the optical gap at n = 27, precisely where the geometrical transition occurs.

1.
A.
Sieck
, “
Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon
,” Ph.D. thesis,
Paderborn Univ.
,
2000
.
2.
L.
Khriachtchev
,
S.
Ossicini
,
F.
Iacona
, and
F.
Gourbilleau
,
Int. J. Photoenergy
2012
,
1
(
2012
).
3.
L.
Shcherbyna
and
T.
Torchynska
,
Physica E
51
,
65
(
2013
).
4.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzo
, and
F.
Priolo
,
Nature
408
,
440
(
2000
).
5.
F.
Priolo
,
T.
Gregorkiewicz
,
M.
Galli
, and
T. F.
Krauss
,
Nat. Nanotechnol.
9
,
19
(
2014
); e-print arXiv:0312448 [math].
6.
K.-M.
Ho
,
A. A.
Shvartsburg
,
B.
Pan
,
Z.-Y.
Lu
,
C.-Z.
Wang
,
J. G.
Wacker
,
J. L.
Fye
, and
M. F.
Jarrold
,
Nature
392
,
582
(
1998
).
7.
B.
Liu
,
Z.-Y.
Lu
,
B.
Pan
,
C.-Z.
Wang
,
K.-M.
Ho
,
A. A.
Shvartsburg
, and
M. F.
Jarrold
,
J. Chem. Phys.
109
,
9401
(
1998
).
8.
K.
Raghavachari
and
C. M.
Rohlfing
,
J. Chem. Phys.
89
,
2219
(
1988
).
9.
S.
Yoo
,
J.
Zhao
,
J.
Wang
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
126
,
13845
(
2004
).
10.
J. C.
Grossman
and
L.
Mitáš
,
Phys. Rev. B
52
,
16735
(
1995
).
11.
K.
Raghavachari
and
C. M.
Rohlfing
,
Chem. Phys. Lett.
143
,
428
(
1988
).
12.
S.
Yoo
and
X. C.
Zeng
,
J. Chem. Phys.
119
,
1442
(
2003
).
13.
W.-H.
Yang
,
W.-C.
Lu
,
C.
Wang
, and
K.
Ho
,
J. Phys. Chem. C
120
,
1966
(
2016
).
14.
J.
Pan
and
M. V.
Ramakrishna
,
Phys. Rev. B
50
,
15431
(
1994
).
15.
V. E.
Bazterra
,
O.
Oña
,
M. C.
Caputo
,
M. B.
Ferraro
,
P.
Fuentealba
, and
J. C.
Facelli
,
Phys. Rev. A
69
,
053202
(
2004
).
16.
E.
Blaisten-Barojas
and
D.
Levesque
,
Phys. Rev. B
34
,
3910
(
1986
).
17.
S.
Yoo
and
X. C.
Zeng
,
Angew. Chem., Int. Ed.
44
,
1491
(
2005
).
18.
S.
Yoo
,
X. C.
Zeng
,
X.
Zhu
, and
J.
Bai
,
J. Am. Chem. Soc.
125
,
13318
(
2003
).
19.
A.
Mistriotis
,
N.
Flytzanis
, and
S.
Farantos
,
Phys. Rev. B
39
,
1212
(
1989
).
20.
J. C.
Grossman
and
L.
Mitáš
,
Phys. Rev. Lett.
74
,
1323
(
1995
).
21.
E.
Kaxiras
and
K.
Jackson
,
Phys. Rev. Lett.
71
,
727
(
1993
).
22.
M. F.
Jarrold
and
V. A.
Constant
,
Phys. Rev. Lett.
67
,
2994
(
1991
).
23.
L.
Mitas
,
J. C.
Grossman
,
I.
Stich
, and
J.
Tobik
,
Phys. Rev. Lett.
84
,
1479
(
2000
).
24.
I.
Rata
,
A. A.
Shvartsburg
,
M.
Horoi
,
T.
Frauenheim
,
K. M.
Siu
, and
K. A.
Jackson
,
Phys. Rev. Lett.
85
,
546
(
2000
).
25.
J.
Bai
,
L.-F.
Cui
,
J.
Wang
,
S.
Yoo
,
X.
Li
,
J.
Jellinek
,
C.
Koehler
,
T.
Frauenheim
,
L.-S.
Wang
, and
X. C.
Zeng
,
J. Phys. Chem. A
110
,
908
(
2006
).
26.
K.
Raghavachari
and
V.
Logovinsky
,
Phys. Rev. Lett.
55
,
2853
(
1985
).
27.
D.
Tomańek
and
M.
Schluter
,
Phys. Rev. B
36
,
1208
(
1987
).
28.
A.
Sieck
,
D.
Porezag
,
T.
Frauenheim
,
M.
Pederson
, and
K.
Jackson
,
Phys. Rev. A
56
,
4890
(
1997
).
29.
U.
Röthlisberger
,
W.
Andreoni
, and
M.
Parrinello
,
Phys. Rev. Lett.
72
,
665
(
1994
).
30.
S.
Yoo
,
N.
Shao
,
C.
Koehler
,
T.
Fraunhaum
, and
X. C.
Zeng
,
J. Chem. Phys.
124
,
164311
(
2006
).
31.
S.
Yoo
and
X. C.
Zeng
,
J. Chem. Phys.
123
,
164303
(
2005
).
32.
X.
Wang
,
R.
Zhang
,
S. T.
Lee
,
T. A.
Niehaus
, and
T.
Frauenheim
,
Appl. Phys. Lett.
90
,
123116
(
2007
).
33.
E.
Degoli
,
G.
Cantele
,
E.
Luppi
,
R.
Magri
,
D.
Ninno
,
O.
Bisi
, and
S.
Ossicini
,
Phys. Rev. B
69
,
155411
(
2004
).
34.
A.
Puzder
,
A. J.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
J. Am. Chem. Soc.
125
,
2786
(
2003
).
35.
Z.
Zhou
,
L.
Brus
, and
R.
Friesner
,
Nano Lett.
3
,
163
(
2003
).
36.
A.
Puzder
,
A.
Williamson
,
F.
Reboredo
, and
G.
Galli
,
Phys. Rev. Lett.
91
,
157405
(
2003
).
37.
A. R.
Oganov
,
Modern Methods of Crystal Structure Prediction
(
John Wiley & Sons
,
2011
).
38.
S. M.
Woodley
,
Applications of Evolutionary Computation in Chemistry
(
Springer
,
2004
), pp.
95
132
.
39.
T.
Bush
,
C. R. A.
Catlow
, and
P.
Battle
,
J. Mater. Chem.
5
,
1269
(
1995
).
40.
A. R.
Oganov
,
A. O.
Lyakhov
, and
M.
Valle
,
Acc. Chem. Res.
44
,
227
(
2011
).
41.
C. W.
Glass
,
A. R.
Oganov
, and
N.
Hansen
,
Comput. Phys. Commun.
175
,
713
(
2006
).
42.
A. O.
Lyakhov
,
A. R.
Oganov
, and
M.
Valle
,
Comput. Phys. Commun.
181
,
1623
(
2010
).
43.
G.
Seifert
,
H.
Eschrig
, and
W.
Bieger
,
Z. Phys. Chem.-Leipzig
267
,
529
(
1986
).
44.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
45.
T.
Frauenheim
,
G.
Seifert
,
M.
Elstner
,
T.
Niehaus
,
C.
Köhler
,
M.
Amkreutz
,
M.
Sternberg
,
Z.
Hajnal
,
A.
Di Carlo
, and
S.
Suhai
,
J. Phys.: Condens. Matter
14
,
3015
(
2002
).
46.
T.
Krüger
,
M.
Elstner
,
P.
Schiffels
, and
T.
Frauenheim
,
J. Chem. Phys.
122
,
114110
(
2005
).
47.
M.
Elstner
and
G.
Seifert
,
Phil. Trans. R. Soc. A
372
,
20120483
(
2014
).
48.
M. X.
He
,
R. Q.
Zhang
,
T. A.
Niehaus
,
T.
Frauenheim
, and
S. T.
Lee
,
J. Theor. Comput. Chem.
8
,
299
(
2009
).
49.
Q.
Li
,
R.
Zhang
,
S. T.
Lee
,
T.
Niehaus
, and
T.
Frauenheim
,
Appl. Phys. Lett.
91
,
043106
(
2007
).
50.
Q.
Li
,
R.
Zhang
,
T. A.
Niehaus
,
T.
Frauenheim
, and
S. T.
Lee
,
J. Chem. Theory Comput.
3
,
1518
(
2007
).
51.
X.
Wang
,
R.
Zhang
,
T. A.
Niehaus
,
T.
Frauenheim
, and
S. T.
Lee
,
J. Phys. Chem. C
111
,
12588
(
2007
).
52.
Q.
Li
,
R.
Zhang
,
S. T.
Lee
,
T. A.
Niehaus
, and
T.
Frauenheim
,
Appl. Phys. Lett.
92
,
053107
(
2008
).
53.
X.
Wang
,
R. Q.
Zhang
,
S. T.
Lee
,
T.
Frauenheim
, and
T. A.
Niehaus
,
Appl. Phys. Lett.
93
,
243120
(
2008
).
54.
Q.
Li
,
R.
Zhang
,
S. T.
Lee
,
T. A.
Niehaus
, and
T.
Frauenheim
,
J. Chem. Phys.
128
,
244714
(
2008
).
55.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
56.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
,
J. Phys. Chem. A
111
,
5678
(
2007
).
57.

For the first search, USPEX/DFTB+ provides 70 structures at each generation. We selected the top 20 lowest DFTB energy structures plus 10 randomly selected structures among the rest, and then we re-optimized the structures at the DFT level. For our second search, using the top 10 lowest energy structures of the first search as seeds, USPEX/DFTB+ provides 140 structures at each generation. We selected the top 20 lowest DFTB energy structures and re-optimized them within the DFT framework.

58.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
59.
T.
Petrenko
and
F.
Neese
,
J. Chem. Phys.
127
,
164319
(
2007
).
60.
T.
Petrenko
and
F.
Neese
,
J. Chem. Phys.
137
,
234107
(
2012
).
61.
See for FHI-aims input and output files of top 30 lowest structures of Sin, n = 8-80 which were obtained in the first search.
62.
See for FHI-aims input and output files of top 20 lowest structures of Sin, n = 21-60 which were obtained in the second search.
63.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
OUP
,
Oxford
,
2012
).
64.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
65.
A.
Bergner
,
M.
Dolg
,
W.
Küchle
,
H.
Stoll
, and
H.
Preuß
,
Mol. Phys.
80
,
1431
(
1993
).
66.
L.
Zhang
,
Y.
Zhang
,
H.
Tao
,
X.
Sun
,
Z.
Guo
, and
L.
Zhu
,
J. Mol. Struct.: THEOCHEM
617
,
87
(
2002
).
67.
L.
Petit
,
P.
Maldivi
, and
C.
Adamo
,
J. Chem. Theory Comput.
1
,
953
(
2005
).
68.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
69.
P.
Stephens
,
F.
Devlin
,
C.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
70.
T. A.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
,
Phys. Rev. B
63
,
085108
(
2001
).
71.
T. A.
Niehaus
,
J. Mol. Struct.: THEOCHEM
914
,
38
(
2009
).
72.
The Cambridge Cluster Database,
D. J.
Wales
,
J. P. K.
Doye
,
A.
Dullweber
,
M. P.
Hodges
,
F. Y.
Naumkin
,
F.
Calvo
,
J.
Hernández-Rojas
, and
T. F.
Middleton
, URL http://www-wales.ch.cam.ac.uk/CCD.html.
73.
S.
Goedecker
,
W.
Hellmann
, and
T.
Lenosky
,
Phys. Rev. Lett.
95
,
055501
(
2005
).
74.
S.
Yoo
and
X. C.
Zeng
,
J. Chem. Phys.
124
,
054304
(
2006
).
75.
J.
Wang
,
X.
Zhou
,
G.
Wang
, and
J.
Zhao
,
Phys. Rev. B
71
,
113412
(
2005
).
76.
R.
Zhou
and
B.
Pan
,
Phys. Lett. A
368
,
396
(
2007
).
77.
J.
Zhao
,
L.
Ma
, and
B.
Wen
,
J. Phys.: Condens. Matter
19
,
226208
(
2007
).
78.
K.
Raghavachari
and
L. A.
Curtiss
,
Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy
(
Springer
,
1995
), pp.
173
207
.
79.
X.
Zhu
and
X. C.
Zeng
,
J. Chem. Phys.
118
,
3558
(
2003
).
80.
R. R.
Hudgins
,
M.
Imai
,
M. F.
Jarrold
, and
P.
Dugourd
,
J. Chem. Phys.
111
,
7865
(
1999
).
81.
82.
L.-Z.
Zhao
,
W.-C.
Lu
,
W.
Qin
,
C.
Wang
, and
K.
Ho
,
J. Phys. Chem. A
112
,
5815
(
2008
).
83.
A. R.
Oganov
and
M.
Valle
,
J. Chem. Phys.
130
,
104504
(
2009
).
84.
M.
Valle
and
A. R.
Oganov
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
66
,
507
(
2010
).
85.
L.
Bloomfield
,
R.
Freeman
, and
W.
Brown
,
Phys. Rev. Lett.
54
,
2246
(
1985
).
86.
W.
Hellmann
,
R.
Hennig
,
S.
Goedecker
,
C.
Umrigar
,
B.
Delley
, and
T.
Lenosky
,
Phys. Rev. B
75
,
085411
(
2007
).
87.
M.
Haertelt
,
J. T.
Lyon
,
P.
Claes
,
J.
de Haeck
,
P.
Lievens
, and
A.
Fielicke
,
J. Chem. Phys.
136
,
064301
(
2012
).
88.
A.
Sadeghi
,
S. A.
Ghasemi
,
B.
Schaefer
,
S.
Mohr
,
M. A.
Lill
, and
S.
Goedecker
,
J. Chem. Phys.
139
,
184118
(
2013
).
89.
A.
Fielicke
,
J. T.
Lyon
,
M.
Haertelt
,
G.
Meijer
,
P.
Claes
,
J.
de Haeck
, and
P.
Lievens
,
J. Chem. Phys.
131
,
171105
(
2009
).
90.
Q.
Zhang
,
Y.
Liu
,
R.
Curl
,
F.
Tittel
, and
R.
Smalley
,
J. Chem. Phys.
88
,
1670
(
1988
).
91.
C. H.
Patterson
and
R. P.
Messmer
,
Phys. Rev. B
42
,
7530
(
1990
).
92.
O.
Akcakir
,
J.
Therrien
,
G.
Belomoin
,
N.
Barry
,
J. D.
Muller
,
E.
Gratton
, and
M.
Nayfeh
,
Appl. Phys. Lett.
76
,
1857
(
2000
).
93.
I. L.
Medintz
,
H. T.
Uyeda
,
E. R.
Goldman
, and
H.
Mattoussi
,
Nat. Mater.
4
,
435
(
2005
).
94.
X.
Gao
,
Y.
Cui
,
R. M.
Levenson
,
L. W. K.
Chung
, and
S.
Nie
,
Nat. Biotechol.
22
,
969
(
2004
).
95.
A. M.
Derfus
,
W. C. W.
Chan
, and
S. N.
Bhatia
,
Nano Lett.
4
,
11
(
2004
).
96.
E.
Baerends
,
O.
Gritsenko
, and
R.
Van Meer
,
Phys. Chem. Chem. Phys.
15
,
16408
(
2013
).
97.
R.
Van Meer
,
O.
Gritsenko
, and
E.
Baerends
,
J. Chem. Theory Comput.
10
,
4432
(
2014
).
98.
C. S.
Garoufalis
,
D.
Zdetsis
, and
S.
Grimme
,
Phys. Rev. Lett.
87
,
276402
(
2001
).
99.
T.
Niehaus
and
F.
Della Sala
,
Phys. Status Solidi B
249
,
237
(
2012
).
100.
V.
Lutsker
,
B.
Aradi
, and
T. A.
Niehaus
,
J. Chem. Phys.
143
,
184107
(
2015
).
101.
J. J.
Kranz
,
M.
Elstner
,
B.
Aradi
,
T.
Frauenheim
,
V.
Lutsker
,
A. D.
Garcia
, and
T. A.
Niehaus
,
J. Chem. Theory Comput.
13
,
1737
(
2017
).
102.
M. M.
Anas
and
G.
Gopir
,
J. Nanomater.
2015
,
481087
.

Supplementary Material

You do not currently have access to this content.