Transition Path Theory (TPT) provides a rigorous framework to investigate the dynamics of rare thermally activated transitions. In this theory, a central role is played by the forward committor function q+(x), which provides the ideal reaction coordinate. Furthermore, the reactive dynamics and kinetics are fully characterized in terms of two time-independent scalar and vector distributions. In this work, we develop a scheme which enables all these ingredients of TPT to be efficiently computed using the short non-equilibrium trajectories generated by means of a specific combination of enhanced path sampling techniques. In particular, first we further extend the recently introduced self-consistent path sampling algorithm in order to compute the committor q+(x). Next, we show how this result can be exploited in order to define efficient algorithms which enable us to directly sample the transition path ensemble.

1.
D.
Zuckerman
,
Statistical Physics of Biomolecules: An Introduction
(
CRC Press
,
Boca Raton, Florida, USA
,
2010
).
2.
H. S.
Chung
,
K.
McHale
,
J. M.
Louis
, and
W. A.
Eaton
,
Science
335
,
981
(
2012
).
3.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
4.
T. J.
Lane
,
D.
Shukla
,
K. A.
Beauchamp
, and
V. S.
Pande
,
Curr. Opin. Struct. Biol.
23
,
58
(
2013
).
5.
R.
Elber
,
J. Chem. Phys.
144
,
060901
(
2016
).
6.
G. R.
Bowman
,
V. J.
Pande
, and
F.
Noé
,
Advances in Experimental Medicine and Biology
(
Springer
,
2013
), Vol. 797.
7.
J. M.
Bello-Rivas
and
R.
Elber
,
J. Chem. Phys.
142
,
094102
(
2015
).
8.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
9.
T. S.
Van Erp
,
D.
Moroni
, and
P.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
10.
R. J.
Allen
,
C.
Valeriani
, and
P. R.
ten Wolde
,
J. Phys.: Condens. Matter
21
,
463102
(
2009
).
11.
B.
Isralewitz
,
M.
Gao
, and
K.
Schulten
,
Curr. Opin. Struct. Biol.
11
,
224
(
2001
).
12.
P.
Ferrara
,
J.
Apostolakis
, and
A.
Caflisch
,
Proteins
39
,
252
(
2000
).
13.
P.
Tiwary
and
M.
Parrinello
,
Phys. Rev. Lett.
111
,
230602
(
2013
).
14.
S. a.
Beccara
,
L.
Fant
, and
P.
Faccioli
,
Phys. Rev. Lett.
114
,
098103
(
2015
).
15.
E.
Paci
and
M.
Karplus
,
J. Mol. Biol.
288
,
441
(
1999
).
16.
C.
Camilloni
,
R. A.
Broglia
, and
G.
Tiana
,
J. Chem. Phys.
134
,
045105
(
2011
).
17.
W.
E
and
E.
Vanden-Eijnden
,
J. Stat. Phys.
123
,
503
(
2006
).
18.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
413
,
242
(
2005
).
19.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
125
,
084110
(
2006
).
20.
21.
E.
Wigner
,
Trans. Faraday Soc.
34
,
29
(
1938
).
22.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
130
,
194103
(
2009
).
23.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Phys. Chem. B
109
,
6688
(
2005
).
24.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
,
J. Chem. Phys.
125
,
024106
(
2006
).
25.
M.
Kim
,
R.
Jernigan
, and
G.
Chirikjian
,
Biophys. J.
83
,
1620
(
2002
).
26.
D. R.
Weiss
and
M.
Levitt
,
J. Mol. Biol.
385
,
665
(
2009
).
27.
H.
Jonsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Nudged elastic band method for finding minimum energy paths of transitions
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), Chap. 16, p.
385D404
.
28.
A.
Ghosh
,
R.
Elber
, and
H.
Scheraga
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
10394
(
2002
).
29.
R.
Elber
and
D.
Shalloway
,
J. Chem. Phys.
112
,
5539
(
2000
).
30.
P.
Eastman
,
N.
Gronbech-Jensen
, and
S.
Doniach
,
J. Chem. Phys.
114
,
3823
(
2001
).
31.
P.
Faccioli
,
M.
Sega
,
F.
Pederiva
, and
H.
Orland
,
Phys. Rev. Lett.
97
,
108101
(
2006
).
32.
M.
Sega
,
P.
Faccioli
,
F.
Pederiva
,
G.
Garberoglio
, and
H.
Orland
,
Phys. Rev. Lett.
99
,
118102
(
2007
).
33.
S.
Orioli
S. a.
Beccara
and
P.
Faccioli
,
J. Chem. Phys.
147
,
064108
(
2017
).
34.
J.
Lu
and
J.
Nolen
,
Probab. Theory Relat. Fields
161
,
195
(
2015
).
35.
J. L.
Doob
,
Bulletin de la S. M. F.
85
,
431
458
(
1957
).
36.
R.
Elber
,
J. M.
Bello-Rivas
,
P.
Ma
,
A. E.
Cardenas
, and
A.
Fathizadeh
,
Entropy
19
,
219
(
2017
).
37.
D.
Wales
,
J. Chem. Phys.
130
,
204111
(
2009
).
38.
C.
Dellago
and
P. G.
Bolhuis
,
Atomistic Approaches in Modern Biology
, Topics in Current Chemistry (
Springer
,
Berlin, Heidelberg
,
2006
), Vol. 268, p.
291
.
39.
G. D.
Leines
and
B.
Ensing
,
Phys. Rev. Lett.
109
,
020601
(
2012
).
40.
B.
Bonomi
,
D.
Branduardi
,
F. L.
Gervasio
, and
M.
Parrinello
,
J. Am. Chem. Soc.
130
(
42
),
13938
(
2008
).
41.
S. a.
Beccara
,
T.
Skrbic
,
R.
Covino
, and
P.
Faccioli
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
2330
(
2012
).
42.
G.
Cazzolli
,
F.
Wang
,
S. a.
Beccara
,
A.
Gershenson
,
P.
Faccioli
, and
P. L.
Wintrode
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
15414
(
2014
).
43.
D.
Branduardi
,
F. L.
Gervasio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
054103
(
2007
).
44.
G.
Mazzola
,
S. a.
Beccara
,
P.
Faccioli
, and
H.
Orland
,
J. Chem. Phys.
134
,
164109
(
2011
).
45.
M.
Cameron
and
E.
Vanden-Eijnden
,
J. Stat. Phys.
156
,
427
(
2014
).
46.
E.
Vanden-Eijnden
, “
Transition path theory
,” in
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, Volume 797 of Advances in Experimental Medicine and Biology, edited by
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noé
(
Springer Science and Business Media
,
2013
), Chap. 7.
47.
H.
Orland
,
J. Chem. Phys.
134
,
174114
(
2011
).
48.
M.
Delarue
,
P.
Koehl
, and
H.
Orland
,
J. Chem. Phys.
147
,
152703
(
2017
).
49.
W.
E
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
50.
E.
Vanden-Eijnden
,
Lect. Notes Phys.
703
,
439
(
2006
).
51.
F.
Wang
,
S.
Orioli
,
A.
Ianeselli
,
G.
Spagnolli
,
S. a.
Beccara
,
A.
Gershenson
,
P.
Faccioli
, and
P. L.
Wintrode
,
Biophys. J.
114
,
2083
(
2018
).

Supplementary Material

You do not currently have access to this content.