Metadynamics is a computational method to explore the phase space of a molecular system. Gaussian functions are added along relevant coordinates on the fly during a molecular-dynamics simulation to force the system to escape from minima in the potential energy function. The dynamics in the resulting trajectory are however unphysical and cannot be used directly to estimate dynamical properties of the system. Girsanov reweighting is a recent method used to construct the Markov State Model (MSM) of a system subjected to an external perturbation. With the combination of these two techniques—metadynamics/Girsanov-reweighting—the unphysical dynamics in a metadynamics simulation can be reweighted to obtain the MSM of the unbiased system. We demonstrate the method on a one-dimensional diffusion process, alanine dipeptide, and the hexapeptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG). The results are in excellent agreement with the MSMs obtained from direct unbiased simulations of these systems. We also apply metadynamics/Girsanov-reweighting to a β-hairpin peptide, whose dynamics is too slow to efficiently explore its phase space by direct simulation.

1.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
329
,
261
(
2000
).
2.
M.
Souaille
and
B.
Roux
,
Comput. Phys. Commun.
135
,
40
57
(
2001
).
3.
T.
Huber
,
A.
Torda
, and
W.
van Gunsteren
,
J. Comput.-Aided Mol. Des.
8
,
695
(
1994
).
4.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
5.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
6.
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).
7.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
8.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
9.
R. B.
Best
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6732
(
2005
).
10.
R.
Hegger
and
G.
Stock
,
J. Chem. Phys.
130
,
034106
(
2009
).
11.
P.
Faccioli
,
A.
Lonardi
, and
H.
Orland
,
J. Chem. Phys.
133
,
045104
(
2010
).
12.
C.
Schütte
,
A.
Fischer
,
W.
Huisinga
, and
P.
Deuflhard
,
J. Comput. Phys.
151
,
146
(
1999
).
13.
C.
Schütte
,
W.
Huisinga
, and
P.
Deuflhard
, ZIB Report SC-99-36,
1999
.
14.
P.
Deuflhard
,
W.
Huisinga
,
A.
Fischer
, and
C.
Schütte
,
Linear Algebra Appl.
315
,
39
(
2000
).
15.
W. C.
Swope
,
J. W.
Pitera
,
F.
Suits
,
M.
Pitman
,
M.
Eleftheriou
,
B. G.
Fitch
,
R. S.
Germain
,
A.
Rayshubski
,
T. J. C.
Ward
,
Y.
Zhestkov
, and
R.
Zhou
,
J. Phys. Chem. B
108
,
6582
(
2004
).
16.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
17.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
18.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
19.
B.
Keller
,
X.
Daura
, and
W. F.
Van Gunsteren
,
J. Chem. Phys.
132
,
074110
(
2010
).
20.
B.
Keller
,
P.
Hünenberger
, and
W. F.
van Gunsteren
,
J. Chem. Theory Comput.
7
,
1032
(
2011
).
21.
V. A.
Voelz
,
G. R.
Bowman
,
K. A.
Beauchamp
, and
V. S.
Pande
,
J. Am. Chem. Soc.
132
,
1526
(
2010
).
22.
G. D.
Fabritiis
,
N.
Stanley
, and
S.
Esteban-martín
,
Nat. Commun.
5
,
5272
(
2014
).
23.
G. R.
Bowman
,
E. R.
Bolin
,
K. M.
Hart
,
B. C.
Maguire
, and
S.
Marqusee
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
2734
(
2015
).
24.
N.
Plattner
and
F.
Noé
,
Nat. Commun.
6
,
7653
(
2015
).
25.
L.
Zhang
,
I. C.
Unarta
,
P. P.-H.
Cheung
,
G.
Wang
,
D.
Wang
, and
X.
Huang
,
Acc. Chem. Res.
49
,
698
(
2016
).
26.
J.
Witek
,
B. G.
Keller
,
M.
Blatter
,
A.
Meissner
,
T.
Wagner
, and
S.
Riniker
,
J. Chem. Inf. Model.
56
,
1547
(
2016
).
27.
M.
Biswas
,
B.
Lickert
, and
G.
Stock
,
J. Chem. Phys. B
122
,
5508
(
2018
).
28.
G. R.
Bowman
,
D. L.
Ensign
, and
V. S.
Pande
,
J. Chem. Theory Comput.
6
,
787
794
(
2010
).
29.
J.-H.
Prinz
,
J. D.
Chodera
,
V. S.
Pande
,
W. C.
Swope
,
J. C.
Smith
, and
F.
Noé
,
J. Chem. Phys.
134
,
244108
(
2011
).
30.
J. D.
Chodera
,
W. C.
Swope
,
F.
Noé
,
J.-H.
Prinz
,
M. R.
Shirts
, and
V. S.
Pande
,
J. Chem. Phys.
134
,
244107
(
2011
).
31.
D. D. L.
Minh
and
J. D.
Chodera
,
J. Chem. Phys.
131
,
134110
(
2009
).
32.
H.
Wu
,
A. S. J. S.
Mey
,
E.
Rosta
, and
F.
Noé
,
J. Chem. Phys.
141
,
214106
(
2014
).
33.
H.
Wu
,
F.
Paul
,
C.
Wehmeyer
, and
F.
Noé
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
E3221
(
2016
).
34.
E.
Rosta
and
G.
Hummer
,
J. Chem. Theory Comput.
11
,
276
(
2014
).
35.
P.
Tiwary
and
M.
Parrinello
,
Phys. Rev. Lett.
111
,
230602
(
2013
).
36.
R.
Casasnovas
,
V.
Limongelli
,
P.
Tiwary
,
P.
Carloni
, and
M.
Parrinello
,
J. Am. Chem. Soc.
139
,
4780
(
2017
).
37.
B.
Øksendal
,
Stochastic Differential Equations: An Introduction with Applications
, 6th ed. (
Springer Verlag
,
Berlin
,
2003
).
38.
C.
Schütte
,
A.
Nielsen
, and
M.
Weber
,
Mol. Phys.
113
,
69
(
2015
).
39.
L.
Donati
,
C.
Hartmann
, and
B. G.
Keller
,
J. Chem. Phys.
146
,
244112
(
2017
).
40.
J.
Quer
,
L.
Donati
, and
B. G.
Keller
,
SIAM J. Sci. Comput.
40
,
A653
A670
(
2017
).
41.
D.
Branduardi
,
G.
Bussi
, and
M.
Parrinello
,
J. Chem. Theory Comput.
8
,
2247
2254
(
2002
).
42.
F.
Marinelli
,
F.
Pietrucci
,
A.
Laio
, and
S.
Piana
,
PLoS Comput. Biol.
5
,
e1000452
(
2009
).
43.
M.
Bonomi
,
A.
Barducci
, and
M.
Parrinello
,
J. Comput. Chem.
5
,
1
(
2009
).
44.
P.
Tiwary
and
M.
Parrinello
,
J. Phys. Chem. B
119
,
736
742
(
2014
).
45.
P.
Eastman
,
M. S.
Friedrichs
,
J. D.
Chodera
,
R. J.
Radmer
,
C. M.
Bruns
,
J. P.
Ku
,
K. A.
Beauchamp
,
T. J.
Lane
,
L.-P.
Wang
,
D.
Shukla
,
T.
Tye
,
M.
Houston
,
T.
Stich
,
C.
Klein
,
M. R.
Shirts
, and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
461
(
2013
).
46.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
,
J. Chem. Theory Comput.
11
,
3696
(
2015
).
47.
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
,
Proteins
55
,
383
(
2004
).
48.
J. A.
Izaguirre
,
C. R.
Sweet
, and
V. S.
Pande
,
Pac. Symp. Biocomput.
15
,
240
(
2010
).
49.
T.
Granlund
and
GMP Development Team
,
GNU MP: The GNU Multiple Precision Arithmetic Library
, 5th ed. (
Free Software Foundation
,
2012
), http://gmplib.org/.
50.
L.
Fousse
,
G.
Hanrot
,
V.
Lefèvre
,
P.
Pélissier
, and
P.
Zimmermann
,
ACM Trans. Math. Software
33
,
13:1
(
2007
).
51.
G.
Guennebaud
,
J.
Benoît
 et al., Eigen v3, http://eigen.tuxfamily.org,
2010
.
52.
R.
Uehara
,
Y.
Takeuchi
,
S.
Tanaka
,
K.
Takano
,
Y.
Koga
, and
S.
Kanaya
,
Biochemistry
51
,
5369
(
2012
).
53.
A.
Gronenborn
,
D.
Filpula
,
N.
Essig
,
A.
Achari
,
M.
Whitlow
,
P.
Wingfield
, and
G.
Clore
,
Science
253
(
5020
),
657
(
1991
).
54.
C. R.
Schwantes
and
V. S.
Pande
,
J. Chem. Theory Comput.
9
,
2000
(
2013
).
55.
G.
Perez-Hernandez
,
T.
Paul Giorgino
,
G.
De Fabritiis
, and
F.
Noé
,
J. Chem. Phys.
139
,
015102
(
2013
).
56.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
57.
F.
Vitalini
,
A. S. J. S.
Mey
,
F.
Noé
,
B. G.
Keller
,
F.
Vitalini
,
A. S. J. S.
Mey
,
F.
Noé
, and
B. G.
Keller
,
J. Chem. Phys.
142
,
084101
(
2015
).
58.
F.
Nüske
,
B.
Keller
,
G.
Perez-Hernandez
,
A. S. J. S.
Mey
, and
F.
Noé
,
J. Chem. Theory Comput.
10
,
1739
(
2014
).
59.
F.
Vitalini
,
F.
Noé
, and
B. G.
Keller
,
J. Chem. Theory Comput.
11
,
3992
(
2015
).
60.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
134
,
204105
(
2011
).
61.
O.
Lemke
and
B. G.
Keller
,
J. Chem. Phys.
145
,
164104
(
2016
).
62.
L.
Onsager
and
S.
Machlup
,
Phys. Rev.
91
,
1501
(
1953
).
63.
T. B.
Woolf
,
Chem. Phys. Lett.
289
,
433
(
1998
).
64.
D. M.
Zuckerman
and
T. B.
Woolf
,
J. Chem. Phys.
111
,
9475
(
1999
).
65.
D. M.
Zuckerman
and
T. B.
Woolf
,
Phys. Rev. E
63
,
016702
(
2000
).
66.
C.
Xing
and
I.
Andricioaei
,
J. Chem. Phys.
124
,
034110
(
2006
).
You do not currently have access to this content.