The intersystem crossing (ISC) pathways of triplet benzene molecules in a benzene crystal were investigated theoretically. A combination of the gradient projection (GP) method, which is a standard method for optimizing the crossing seam of two potential energy surfaces, and the single-component artificial-force-induced reaction (SC-AFIR) method (GP/SC-AFIR) was used. This is the first reported use of a GP/SC-AFIR calculation using a density functional theory calculation with periodic boundary conditions. A systematic search for the minimum-energy structures in the seams of crossing of the singlet (S0) and triplet (T1) potential energy surfaces (S0/T1-MESX structures) found 39 independent S0/T1-MESX structures. Energy barriers between the S0/T1-MESX and the stationary structure of the triplet state (T1-MIN) were computed, and then two competing ISC pathways were extracted; the calculated overall energy barrier to the intermolecular C–C-bonded type (SX3) and the out-of-plane bent C–H type (SX15) S0/T1-MESX structures from T1-MIN were 0.26 and 0.27 eV, respectively. The rate constants for SX3 and SX15 formation were estimated to be 5.07 × 108 and 2.17 × 108 s−1 (at 273 K), respectively, or 9.73 × 10−5 and 4.78 × 10−6 s−1 (at 77 K), respectively. At 273 K, which is close to the melting point of the benzene crystal (278.5 K), SX3 and SX15 are easily accessible from T1-MIN, and ISC could occur through the S0/T1-MESX points. By contrast, at 77 K, T1-MIN survives long enough for phosphorescence to compete with ISC.

1.
Z.
He
,
W.
Zhao
,
J. W. Y.
Lam
,
Q.
Peng
,
H.
Ma
,
G.
Liang
,
Z.
Shuai
, and
B. Z.
Tang
,
Nat. Commun.
8
,
416
(
2017
).
2.
H.
Uoyama
,
K.
Goushi
,
K.
Shizu
,
H.
Nomura
, and
C.
Adachi
,
Nature
492
,
234
(
2012
).
3.
N.
Koga
and
K.
Morokuma
,
Chem. Phys. Lett.
119
,
371
(
1985
).
4.
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
Chem. Soc. Rev.
25
,
321
(
1996
).
5.
D. R.
Yarkony
,
J. Phys. Chem.
103
,
6658
(
1999
).
6.
J. N.
Harvey
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
1
(
2014
).
7.
S.
Maeda
,
K.
Ohno
, and
K.
Morokuma
,
J. Phys. Chem. A
113
,
1704
(
2009
).
8.
Y.
Harabuchi
,
T.
Taketsugu
, and
S.
Maeda
,
Phys. Chem. Chem. Phys.
17
,
22561
(
2015
).
9.
Y.
Harabuchi
,
T.
Taketsugu
, and
S.
Maeda
,
Chem. Lett.
45
,
940
(
2016
).
10.
S.
Maeda
,
T.
Taketsugu
, and
K.
Morokuma
,
J. Comput. Chem.
35
,
166
(
2014
).
11.
K.
Saita
,
Y.
Harabuchi
,
T.
Taketsugu
,
O.
Ishitani
, and
S.
Maeda
,
Phys. Chem. Chem. Phys.
18
,
17557
(
2016
).
12.
Y.
Harabuchi
,
T.
Taketsugu
, and
S.
Maeda
,
Chem. Phys. Lett.
674
,
141
(
2017
).
13.
M. J.
Bearpark
,
M. A.
Robb
, and
H. B.
Schlegel
,
Chem. Phys. Lett.
223
,
269
(
1994
).
14.
Y.
Harabuchi
,
K.
Saita
, and
S.
Maeda
,
Photochem. Photobiol. Sci.
17
,
315
(
2018
).
15.
S.
Maeda
,
Y.
Harabuchi
,
M.
Takagi
,
K.
Saita
,
K.
Suzuki
,
T.
Ichino
,
Y.
Sumiya
,
K.
Sugiyama
, and
Y.
Ono
,
J. Comput. Chem.
39
,
233
(
2018
).
16.
S.
Ruiz-Barragan
,
K.
Morokuma
, and
L.
Blancafort
,
J. Chem. Theory Comput.
11
,
1585
(
2015
).
17.
X.-L.
Peng
,
S.
Ruiz-Barragan
,
Z.-S.
Li
,
Q.-S.
Li
, and
L.
Blancafort
,
J. Mater. Chem. C
4
,
2802
(
2016
).
18.
M.
Hatanaka
,
Y.
Hirai
,
Y.
Kitagawa
,
T.
Nakanishi
,
Y.
Hasegawa
, and
K.
Morokuma
,
Chem. Sci.
8
,
423
(
2017
).
19.
L. W.
Chung
,
W. M. C.
Sameera
,
R.
Ramozzi
,
A. J.
Page
,
M.
Hatanaka
,
G. P.
Petrova
,
T. V.
Harris
,
X.
Li
,
Z. F.
Ke
,
F. Y.
Liu
,
H. B.
Li
,
L. N.
Ding
, and
K.
Morokuma
,
Chem. Rev.
115
,
5678
(
2015
).
20.
M. J.
Bearpark
,
S. M.
Larkin
, and
T.
Vreven
,
J. Phys. Chem. A
112
,
7286
(
2008
).
21.
A.
Bhattacharya
and
E. R.
Bernstein
,
J. Phys. Chem. A
115
,
4135
(
2011
).
22.
M.
Takagi
,
T.
Taketsugu
,
H.
Kino
,
Y.
Tateyama
,
K.
Terakura
, and
S.
Maeda
,
Phys. Rev. B
95
,
184110
(
2017
).
23.
M. R.
Wright
,
R. P.
Frosch
, and
G. W.
Robinson
,
J. Chem. Phys.
33
,
934
(
1960
).
24.
G. W.
Robinson
,
J. Mol. Spectrosc.
6
,
58
(
1961
).
25.
T. E.
Martin
and
A. H.
Kalantar
,
J. Chem. Phys.
48
,
4996
(
1968
).
26.
T. E.
Martin
and
A. H.
Kalantar
,
J. Chem. Phys.
49
,
235
(
1968
).
27.
R.
Li
and
E. C.
Lim
,
J. Chem. Phys.
57
,
605
(
1972
).
28.
G. W.
Robinson
and
R. P.
Frosch
,
J. Chem. Phys.
38
,
1187
(
1963
).
29.
D. M.
Burland
and
G. W.
Robinson
,
J. Chem. Phys.
51
,
4548
(
1969
).
30.
B. R.
Henry
and
W.
Siebrand
,
J. Chem. Phys.
54
,
1072
(
1971
).
31.
S.
Fischer
and
S.
Schneider
,
Chem. Phys. Lett.
10
,
392
(
1971
).
32.
S.
Fischer
,
Chem. Phys. Lett.
11
,
577
(
1971
).
33.
A.
Nitzan
and
J.
Jortner
,
Theor. Chim. Acta
30
,
217
(
1973
).
34.
35.
W.
Siebrand
and
M. Z.
Zgierski
,
Chem. Phys. Lett.
72
,
411
(
1980
).
36.
O. S.
Mortensen
,
W.
Siebrand
, and
A. W.
Tarr
,
Chem. Phys.
125
,
231
(
1988
).
37.
N.
Zamstein
,
S.
Kallush
, and
B.
Segev
,
J. Chem. Phys.
123
,
074304
(
2005
).
38.
A.
Katrusiak
,
M.
Podsiadło
, and
A.
Budzianowski
,
Cryst. Growth Des.
10
,
3461
(
2010
).
39.
K.
Fukui
,
Acc. Chem. Res.
14
,
363
(
1981
).
40.
S.
Maeda
,
Y.
Harabuchi
,
Y.
Ono
,
T.
Taketsugu
, and
K.
Morokuma
,
Int. J. Quantum Chem.
115
,
258
(
2015
).
41.
C.
Choi
and
R.
Elber
,
J. Chem. Phys.
94
,
751
(
1991
).
42.
S.
Maeda
,
Y.
Harabuchi
,
Y.
Sumiya
,
M.
Takagi
,
M.
Hatanaka
,
Y.
Osada
,
T.
Taketsugu
,
K.
Morokuma
, and
K.
Ohno
, GRRM (a developmental version),
Hokkaido University
,
2017
.
43.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
);
E.
Artacho
,
J. M.
Cela
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
R. M.
Martin
,
P.
Ordejón
,
D.
Sánchez-Portal
, and
J. M.
Soler
, SIESTA 3.2 (Patch Level 4),
Fundación General Universidad Autónoma de Madrid
,
Spain
,
2013
, see http://www.uam.es/siesta.
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
D.
Sánchez-Portal
,
E.
Artacho
, and
J. M.
Soler
,
J. Phys.: Condens. Matter
8
,
3859
(
1996
).
46.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
47.
See https://departments.icmab.es/leem/siesta/Databases/Pseudopotentials/periodictable-gga-abinit.html for translation of Abinit’s GGA pseudo database to Siesta format.
48.
J. P.
Doering
,
J. Chem. Phys.
51
,
2866
(
1969
).
49.
J. M.
Crowley
,
J.
Tahir-Kheli
, and
W. A.
Goddard
 III
,
J. Phys. Chem. Lett.
7
,
1198
(
2016
).
50.
Y.
Osamura
,
Chem. Phys. Lett.
145
,
541
(
1988
).
51.
G.
Bergamini
,
A.
Fermi
,
C.
Botta
,
U.
Giovanella
,
S. D.
Motta
,
F.
Negri
,
R.
Peresutti
,
M.
Gingras
, and
P.
Ceroni
,
J. Mater. Chem. C
1
,
2717
(
2013
).
52.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2013
.
53.
S. D.
Colson
and
E. R.
Bernstein
,
J. Chem. Phys.
43
,
2661
(
1965
).
54.
F.
Sicilia
,
M. J.
Bearpark
,
L.
Blancafort
, and
M. A.
Robb
,
Theor. Chem. Acc.
118
,
241
(
2007
).
55.
R. S.
Minns
,
D. S. N.
Parker
,
T. J.
Penfold
,
G. A.
Worth
, and
H. H.
Fielding
,
Phys. Chem. Chem. Phys.
12
,
15607
(
2010
).

Supplementary Material

You do not currently have access to this content.