In this paper, we report results of using enhanced sampling and blind selection techniques for high-accuracy protein structural refinement. By combining a parallel continuous simulated tempering (PCST) method, previously developed by Zang et al. [J. Chem. Phys. 141, 044113 (2014)], and the structure based model (SBM) as restraints, we refined 23 targets (18 from the refinement category of the CASP10 and 5 from that of CASP12). We also designed a novel model selection method to blindly select high-quality models from very long simulation trajectories. The combined use of PCST-SBM with the blind selection method yielded final models that are better than initial models. For Top-1 group, 7 out of 23 targets had better models (greater global distance test total scores) than the critical assessment of structure prediction participants. For Top-5 group, 10 out of 23 were better. Our results justify the crucial position of enhanced sampling in protein structure prediction and refinement and demonstrate that a considerable improvement of low-accuracy structures is achievable with current force fields.

1.
Y.
Zhang
,
Curr. Opin. Struct. Biol.
18
(
3
),
342
(
2008
).
2.
E.
Faraggi
,
Y.
Yang
,
S.
Zhang
, and
Y.
Zhou
,
Structure
17
(
11
),
1515
(
2009
).
4.
S.
Raman
,
R.
Vernon
,
J.
Thompson
,
M.
Tyka
,
R.
Sadreyev
,
J.
Pei
,
D.
Kim
,
E.
Kellogg
,
F.
DiMaio
,
O.
Lange
,
L.
Kinch
,
W.
Sheffler
,
B.-H.
Kim
,
R.
Das
,
N. V.
Grishin
, and
D.
Baker
,
Proteins: Struct., Funct., Bioinf.
77
(
S9
),
89
(
2009
).
5.
M. A.
Marti-Renom
,
A. C.
Stuart
,
A.
Fiser
,
R.
Sanchez
,
F.
Melo
, and
A.
Sali
,
Annu. Rev. Biophys. Biomol. Struct.
29
,
291
(
2000
).
6.
J.
Peng
and
J.
Xu
,
Proteins
79
(
Suppl. 10
),
161
(
2011
).
7.
S. T.
Wu
,
J.
Skolnick
, and
Y.
Zhang
,
BMC Biol.
5
,
17
(
2007
).
8.
Y. J.
Huang
,
B.
Mao
,
J. M.
Aramini
, and
G. T.
Montelione
,
Proteins
82
(
Suppl. 2
),
43
(
2014
).
9.
V.
Mariani
,
F.
Kiefer
,
T.
Schmidt
,
J.
Haas
, and
T.
Schwede
,
Proteins: Struct., Funct., Bioinf.
79
(
S10
),
37
(
2011
).
10.
J.
Moult
,
K.
Fidelis
,
A.
Kryshtafovych
,
T.
Schwede
, and
A.
Tramontano
,
Proteins: Struct., Funct., Bioinf.
82
,
1
(
2014
).
11.
J.
Moult
,
J. T.
Pedersen
,
R.
Judson
, and
K.
Fidelis
,
Proteins: Struct., Funct., Genet.
23
(
3
),
ii
(
1995
).
12.
J.
Moult
,
Curr. Opin. Struct. Biol.
15
(
3
),
285
(
2005
).
13.
T.
Nugent
,
D.
Cozzetto
, and
D. T.
Jones
,
Proteins: Struct., Funct., Bioinf.
82
,
98
(
2014
).
14.
J. L.
MacCallum
,
A.
Perez
,
M. J.
Schnieders
,
L.
Hua
,
M. P.
Jacobson
, and
K. A.
Dill
,
Proteins
79
(
Suppl. 10
),
74
(
2011
).
15.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
(
6055
),
517
(
2011
).
16.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
44
),
17845
(
2012
).
17.
T.
Zang
,
L.
Yu
,
C.
Zhang
, and
J.
Ma
,
J. Chem. Phys.
141
(
4
),
044113
(
2014
).
18.
P. C.
Whitford
,
J. K.
Noel
,
S.
Gosavi
,
A.
Schug
,
K. Y.
Sanbonmatsu
, and
J. N.
Onuchic
,
Proteins: Struct., Funct., Bioinf.
75
(
2
),
430
(
2009
).
19.
C.
Clementi
,
H.
Nymeyer
, and
J. N.
Onuchic
,
J. Mol. Biol.
298
(
5
),
937
(
2000
).
20.
A.
Zemla
,
C.
Venclovas
,
J.
Moult
, and
K.
Fidelis
,
Proteins: Struct., Funct., Genet.
37
(
Suppl. 3
),
22
29
(
1999
).
21.
A.
Zemla
,
Č.
Venclovas
,
J.
Moult
, and
K.
Fidelis
,
Proteins: Struct., Funct., Genet.
45
(
Suppl. 5
),
13
(
2001
).
22.
A.
Zemla
,
Nucleic Acids Res.
31
(
13
),
3370
(
2003
).
23.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
(
2
),
96
(
2001
).
24.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
(
1
),
9
(
1992
).
25.
B.
Baumann
,
Nucl. Phys. B
285
(
3
),
391
(
1987
).
26.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
(
10
),
2050
(
2001
).
27.
P.
Dayal
,
S.
Trebst
,
S.
Wessel
,
D.
Wurtz
,
M.
Troyer
,
S.
Sabhapandit
, and
S. N.
Coppersmith
,
Phys. Rev. Lett.
92
(
9
),
097201
(
2004
).
28.
Q. L.
Yan
,
R.
Faller
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
(
20
),
8745
(
2002
).
29.
Q. L.
Yan
and
J. J.
de Pablo
,
Phys. Rev. Lett.
90
(
3
),
035701
(
2003
).
30.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
(
5
),
056703
(
2002
).
31.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
(
6
),
451
(
1992
).
32.
R. H.
Swendsen
and
J. S.
Wang
,
Phys. Rev. Lett.
57
(
21
),
2607
(
1986
).
33.
M.
Falcioni
and
M. W.
Deem
,
J. Chem. Phys.
110
(
3
),
1754
(
1999
).
34.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
(
1-2
),
141
(
1999
).
35.
D. J.
Earl
and
M. W.
Deem
,
Phys. Chem. Chem. Phys.
7
(
23
),
3910
(
2005
).
36.
P.
Jiang
,
F.
Yasar
, and
U. H. E.
Hansmann
,
J. Chem. Theory Comput.
9
(
8
),
3816
(
2013
).
37.
C.
Zhang
and
J. P.
Ma
,
J. Chem. Phys.
130
(
19
),
194112
(
2009
).
38.
C.
Zhang
and
J. P.
Ma
,
J. Chem. Phys.
132
(
24
),
244101
(
2010
).
39.
G.
Bussi
,
F. L.
Gervasio
,
A.
Laio
, and
M.
Parrinello
,
J. Am. Chem. Soc.
128
(
41
),
13435
(
2006
).
40.
C.
Camilloni
,
D.
Provasi
,
G.
Tiana
, and
R. A.
Broglia
,
Proteins
71
(
4
),
1647
(
2008
).
41.
A.
Barducci
,
M.
Bonomi
,
M. K.
Prakash
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
110
(
49
),
E4708
(
2013
).
42.
R.
Zhou
,
B. J.
Berne
, and
R.
Germain
,
Proc. Natl. Acad. Sci. U. S. A.
98
(
26
),
14931
(
2001
).
43.
A.
Plazinska
,
W.
Plazinski
, and
K.
Jozwiak
,
J. Comput. Chem.
35
(
11
),
876
(
2014
).
44.
A. E.
García
and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U. S. A.
100
(
24
),
13898
(
2003
).
45.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
(
2
),
187
(
1977
).
46.
C.
Bartels
and
M.
Karplus
,
J. Phys. Chem. B
102
(
5
),
865
(
1998
).
47.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
(
20
),
12562
(
2002
).
48.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
(
2
),
020603
(
2008
).
49.
J. K.
Noel
,
P. C.
Whitford
, and
J. N.
Onuchic
,
J. Phys. Chem. B
116
(
29
),
8692
(
2012
).
50.
C.
Zhang
and
J.
Ma
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
21
),
8139
(
2012
).
51.
J.
Shao
,
S. W.
Tanner
,
N.
Thompson
, and
T. E.
Cheatham
,
J. Chem. Theory Comput.
3
(
6
),
2312
(
2007
).
52.
A.
Raval
,
S.
Piana
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
,
Proteins: Struct., Funct., Bioinf.
80
(
8
),
2071
(
2012
).
53.
J.
Zhang
and
Y.
Zhang
,
PLoS One
5
(
10
),
e15386
(
2010
).
54.
C.
Zhang
,
S.
Liu
,
Q.
Zhu
, and
Y.
Zhou
,
J. Med. Chem.
48
(
7
),
2325
(
2005
).
55.
H.
Zhou
and
J.
Skolnick
,
Biophys. J.
101
(
8
),
2043
(
2011
).
56.
M.
Lu
,
A. D.
Dousis
, and
J.
Ma
,
J. Mol. Biol.
376
(
1
),
288
(
2008
).
57.
H. J. C.
Berendsen
,
D.
Vanderspoel
, and
R.
Vandrunen
,
Comput. Phys. Commun.
91
(
1-3
),
43
(
1995
).
58.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model
7
(
8
),
306
(
2001
).
59.
D.
Van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
(
16
),
1701
(
2005
).
60.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
(
3
),
435
(
2008
).
61.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
(
1983
).
62.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
,
Proteins
78
(
8
),
1950
(
2010
).
63.
J. K.
Noel
,
M.
Levi
,
M.
Raghunathan
,
H.
Lammert
,
R. L.
Hayes
,
J. N.
Onuchic
, and
P. C.
Whitford
,
PLoS Comput. Biol.
12
(
3
),
e1004794
(
2016
).

Supplementary Material

You do not currently have access to this content.