The ability to predict accurate thermodynamic and kinetic properties in biomolecular systems is of both scientific and practical utility. While both remain very difficult, predictions of kinetics are particularly difficult because rates, in contrast to free energies, depend on the route taken. For this reason, specific enhanced sampling methods are needed to calculate long-time scale kinetics. It has recently been demonstrated that it is possible to recover kinetics through the so-called “infrequent metadynamics” simulations, where the simulations are biased in a way that minimally corrupts the dynamics of moving between metastable states. This method, however, requires the bias to be added slowly, thus hampering applications to processes with only modest separations of time scales. Here we present a frequency-adaptive strategy which bridges normal and infrequent metadynamics. We show that this strategy can improve the precision and accuracy of rate calculations at fixed computational cost and should be able to extend rate calculations for much slower kinetic processes.

1.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
, “
How fast-folding proteins fold
,”
Science
334
,
517
520
(
2011
).
2.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
, “
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10184
10189
(
2011
).
3.
P.
Tiwary
,
V.
Limongelli
,
M.
Salvalaglio
, and
M.
Parrinello
, “
Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E386
E391
(
2015
).
4.
F.
Paul
,
C.
Wehmeyer
,
E. T.
Abualrous
,
H.
Wu
,
M. D.
Crabtree
,
J.
Schöneberg
,
J.
Clarke
,
C.
Freund
,
T. R.
Weikl
, and
F.
Noé
, “
Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations
,”
Nat. Commun.
8
,
1095
(
2017
).
5.
R. O.
Dror
,
R. M.
Dirks
,
J.
Grossman
,
H.
Xu
, and
D. E.
Shaw
, “
Biomolecular simulation: A computational microscope for molecular biology
,”
Annu. Rev. Biophys.
41
,
429
452
(
2012
).
6.
T. J.
Lane
,
D.
Shukla
,
K. A.
Beauchamp
, and
V. S.
Pande
, “
To milliseconds and beyond: Challenges in the simulation of protein folding
,”
Curr. Opin. Struct. Biol.
23
,
58
65
(
2013
).
7.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
8.
B.
Trendelkamp-Schroer
and
F.
Noé
, “
Efficient estimation of rare-event kinetics
,”
Phys. Rev. X
6
,
011009
(
2016
).
9.
L. T.
Chong
and
D. M.
Zuckerman
, “
Weighted ensemble simulation methods and applications
,”
Annu. Rev. Biophys.
46
,
43
57
(
2016
).
10.
D. R.
Glowacki
,
E.
Paci
, and
D. V.
Shalashilin
, “
Boxed molecular dynamics: Decorrelation time scales and the kinetic master equation
,”
J. Chem. Theory Comput.
7
,
1244
1252
(
2011
).
11.
S.
a Beccara
,
T.
Škrbić
,
R.
Covino
, and
P.
Faccioli
, “
Dominant folding pathways of a WW domain
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
2330
2335
(
2012
).
12.
R. C.
Bernardi
,
M. C.
Melo
, and
K.
Schulten
, “
Enhanced sampling techniques in molecular dynamics simulations of biological systems
,”
Biochim. Biophys. Acta, Gen. Subj.
1850
,
872
877
(
2015
).
13.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
, “
Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint
,”
Annu. Rev. Phys. Chem.
67
,
159
184
(
2016
).
14.
M.
De Vivo
,
M.
Masetti
,
G.
Bottegoni
, and
A.
Cavalli
, “
Role of molecular dynamics and related methods in drug discovery
,”
J. Med. Chem.
59
,
4035
4061
(
2016
).
15.
N. J.
Bruce
,
G. K.
Ganotra
,
D. B.
Kokh
,
S. K.
Sadiq
, and
R. C.
Wade
, “
New approaches for computing ligand–receptor binding kinetics
,”
Curr. Opin. Struct. Biol.
49
,
1
10
(
2018
).
16.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
17.
G.
Bussi
and
D.
Branduardi
, “
Free-energy calculations with metadynamics: Theory and practice
,”
Rev. Comput. Chem.
28
,
1
49
(
2015
).
18.
P.
Tiwary
and
M.
Parrinello
, “
From metadynamics to dynamics
,”
Phys. Rev. Lett.
111
,
230602
(
2013
).
19.
J.
McCarty
,
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
, “
Variationally optimized free-energy flooding for rate calculation
,”
Phys. Rev. Lett.
115
,
070601
(
2015
).
20.
P.
Tiwary
,
J.
Mondal
,
J. A.
Morrone
, and
B.
Berne
, “
Role of water and steric constraints in the kinetics of cavity–ligand unbinding
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12015
12019
(
2015
).
21.
J.
Mondal
,
P.
Tiwary
, and
B.
Berne
, “
How a kinase inhibitor withstands gatekeeper residue mutations
,”
J. Am. Chem. Soc.
138
,
4608
4615
(
2016
).
22.
K. L.
Fleming
,
P.
Tiwary
, and
J.
Pfaendtner
, “
New approach for investigating reaction dynamics and rates with ab initio calculations
,”
J. Phys. Chem. A
120
,
299
305
(
2016
).
23.
H.-J.
Tung
and
J.
Pfaendtner
, “
Kinetics and mechanism of ionic-liquid induced protein unfolding: Application to the model protein HP35
,”
Mol. Syst. Des. Eng.
1
,
382
390
(
2016
).
24.
H.
Sun
,
Y.
Li
,
M.
Shen
,
D.
Li
,
Y.
Kang
, and
T.
Hou
, “
Characterizing drug–target residence time with metadynamics: How to achieve dissociation rate efficiently without losing accuracy against time-consuming approaches
,”
J. Chem. Inf. Model.
57
,
1895
1906
(
2017
).
25.
C. D.
Fu
,
L. F. L.
Oliveira
, and
J.
Pfaendtner
, “
Determining energy barriers and selectivities of a multi-pathway system with infrequent metadynamics
,”
J. Chem. Phys.
146
,
014108
(
2017
).
26.
Y.
Wang
,
J. M.
Martins
, and
K.
Lindorff-Larsen
, “
Biomolecular conformational changes and ligand binding: From kinetics to thermodynamics
,”
Chem. Sci.
8
,
6466
6473
(
2017
).
27.
P.
Tiwary
, “
Molecular determinants and bottlenecks in the dissociation dynamics of biotin-streptavidin
,”
J. Phys. Chem. B
121
(
48
),
10841
10849
(
2017
).
28.
R.
Casasnovas
,
V.
Limongelli
,
P.
Tiwary
,
P.
Carloni
, and
M.
Parrinello
, “
Unbinding kinetics of a p38 map kinase type II inhibitor from metadynamics simulations
,”
J. Am. Chem. Soc.
139
,
4780
4788
(
2017
).
29.
P.
Tiwary
,
J.
Mondal
, and
B.
Berne
, “
How and when does an anticancer drug leave its binding site?
,”
Sci. Adv.
3
,
e1700014
(
2017
).
30.
H.
Grubmüller
, “
Predicting slow structural transitions in macromolecular systems: Conformational flooding
,”
Phys. Rev. E
52
,
2893
(
1995
).
31.
A. F.
Voter
, “
Hyperdynamics: Accelerated molecular dynamics of infrequent events
,”
Phys. Rev. Lett.
78
,
3908
(
1997
).
32.
M.
Salvalaglio
,
P.
Tiwary
, and
M.
Parrinello
, “
Assessing the reliability of the dynamics reconstructed from metadynamics
,”
J. Chem. Theo. Comput.
10
,
1420
1425
(
2014
).
33.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
Plumed 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
34.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).
35.
B.
Barua
,
J. C.
Lin
,
V. D.
Williams
,
P.
Kummler
,
J. W.
Neidigh
, and
N. H.
Andersen
, “
The trp-cage: Optimizing the stability of a globular miniprotein
,”
Protein Eng., Des. Sel.
21
,
171
185
(
2008
).
36.
S.
Piana
,
K.
Sarkar
,
K.
Lindorff-Larsen
,
M.
Guo
,
M.
Gruebele
, and
D. E.
Shaw
, “
Computational design and experimental testing of the fastest-folding β-sheet protein
,”
J. Mol. Biol.
405
,
43
48
(
2011
).
37.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
, “
How robust are protein folding simulations with respect to force field parameterization?
Biophys. J.
100
,
L47
L49
(
2011
).
38.
V. A.
Feher
,
E. P.
Baldwin
, and
F. W.
Dahlquist
, “
Access of ligands to cavities within the core of a protein is rapid
,”
Nat. Struct. Mol. Biol.
3
,
516
521
(
1996
).
39.
G.
Bouvignies
,
P.
Vallurupalli
,
D. F.
Hansen
,
B. E.
Correia
,
O.
Lange
,
A.
Bah
,
R. M.
Vernon
,
F. W.
Dahlquist
,
D.
Baker
, and
L. E.
Kay
, “
Solution structure of a minor and transiently formed state of a T4 lysozyme mutant
,”
Nature
477
,
111
114
(
2011
).
40.
Y.
Wang
,
E.
Papaleo
, and
K.
Lindorff-Larsen
, “
Mapping transiently formed and sparsely populated conformations on a complex energy landscape
,”
eLife
5
,
e17505
(
2016
).
41.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
, and
I.
Vorobyov
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
690
(
2010
).
42.
A.
Morton
,
W. A.
Baase
, and
B. W.
Matthews
, “
Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme
,”
Biochemistry
34
,
8564
8575
(
1995
).
43.
R. A.
Copeland
,
D. L.
Pompliano
, and
T. D.
Meek
, “
Drug–target residence time and its implications for lead optimization
,”
Nat. Rev. Drug Discovery
5
,
730
(
2006
).
44.
M.
Larion
,
A. L.
Hansen
,
F.
Zhang
,
L.
Bruschweiler-Li
,
V.
Tugarinov
,
B. G.
Miller
, and
R.
Brüschweiler
, “
Kinetic cooperativity in human pancreatic glucokinase originates from millisecond dynamics of the small domain
,”
Angew. Chem.
127
,
8247
8250
(
2015
).

Supplementary Material

You do not currently have access to this content.