Recent studies demonstrated that Gaussian accelerated molecular dynamics (GaMD) is a robust computational technique, which provides simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. However, the exact acceleration of biomolecular dynamics or speedup of kinetic rates in GaMD simulations and, more broadly, in enhanced sampling methods, remains a challenging task to be determined. Here, the GaMD acceleration is examined using alanine dipeptide in explicit solvent as a biomolecular model system. Relative to long conventional molecular dynamics simulation, GaMD simulations exhibited ∼36–67 times speedup for sampling of the backbone dihedral transitions. The acceleration depended on level of the GaMD boost potential. Furthermore, Kramers’ rate theory was applied to estimate GaMD acceleration using simulation-derived diffusion coefficients, curvatures and barriers of free energy profiles. In most cases, the calculations also showed significant speedup of dihedral transitions in GaMD, although the GaMD acceleration factors tended to be underestimated by ∼3–96 fold. Because greater boost potential can be applied in GaMD simulations of systems with increased sizes, which potentially leads to higher acceleration, it is subject to future studies on accelerating the dynamics and recovering kinetic rates of larger biomolecules such as proteins and protein-protein/nucleic acid complexes.

1.
W. S.
Hlavacek
,
A.
Redondo
,
H.
Metzger
,
C.
Wofsy
, and
B.
Goldstein
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
7295
(
2001
).
2.
D. A.
Schuetz
,
W. E. A.
de Witte
,
Y. C.
Wong
,
B.
Knasmueller
,
L.
Richter
,
D. B.
Kokh
,
S. K.
Sadiq
,
R.
Bosma
,
I.
Nederpelt
,
L. H.
Heitman
,
E.
Segala
,
M.
Amaral
,
D.
Guo
,
D.
Andres
,
V.
Georgi
,
L. A.
Stoddart
,
S.
Hill
,
R. M.
Cooke
,
C.
De Graaf
,
R.
Leurs
,
M.
Frech
,
R. C.
Wade
,
E. C. M.
de Lange
,
A. P.
IJzerman
,
A.
Muller-Fahrnow
, and
G. F.
Ecker
,
Drug Discov. Today
22
,
896
(
2017
).
3.
K.
Henzler-Wildman
and
D.
Kern
,
Nature
450
,
964
(
2007
).
4.
S.
Yang
,
L.
Salmon
, and
H. M.
Al-Hashimi
,
Nat. Methods
11
,
552
(
2014
).
5.
D.
Vural
,
X.
Hu
,
B.
Lindner
,
N.
Jain
,
Y.
Miao
,
X.
Cheng
,
Z.
Liu
,
L.
Hong
, and
J. C.
Smith
,
Biochim. Biophys. Acta
1861
,
3638
(
2017
).
6.
Y.
Miao
,
Z.
Yi
,
C.
Cantrell
,
D. C.
Glass
,
J.
Baudry
,
N.
Jain
, and
J. C.
Smith
,
Biophys. J.
103
,
2167
(
2012
).
7.
M.
Karplus
and
J. A.
McCammon
,
Nat. Struct. Biol.
9
,
646
(
2002
).
8.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
9.
R.
Salomon-Ferrer
,
D. A.
Case
, and
R. C.
Walker
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
198
(
2013
).
10.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
11.
Y.
Shan
,
E. T.
Kim
,
M. P.
Eastwood
,
R. O.
Dror
,
M. A.
Seeliger
, and
D. E.
Shaw
,
J. Am. Chem. Soc.
133
,
9181
(
2011
).
12.
R. O.
Dror
,
A. C.
Pan
,
D. H.
Arlow
,
D. W.
Borhani
,
P.
Maragakis
,
Y.
Shan
,
H.
Xu
, and
D. E.
Shaw
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
13118
(
2011
).
13.
A. C.
Pan
,
H. F.
Xu
,
T.
Palpant
, and
D. E.
Shaw
,
J. Chem. Theory Comput.
13
,
3372
(
2017
).
14.
V.
Spiwok
,
Z.
Sucur
, and
P.
Hosek
,
Biotechnol. Adv.
33
,
1130
(
2015
).
15.
C.
Abrams
and
G.
Bussi
,
Entropy
16
,
163
(
2014
).
16.
D. M.
Zuckerman
,
Annu. Rev. Biophys.
40
,
41
(
2011
).
17.
C.
Dellago
and
P. G.
Bolhuis
,
Adv. Comput. Simul. Approaches Soft Matter Sci. III
221
,
167
(
2009
).
18.
A.
Liwo
,
C.
Czaplewski
,
S.
Oldziej
, and
H. A.
Scheraga
,
Curr. Opin. Struct. Biol.
18
,
134
(
2008
).
19.
M.
Christen
and
W. F.
van Gunsteren
,
J. Comput. Chem.
29
,
157
(
2008
).
20.
J.
Kastner
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
932
(
2011
).
21.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
22.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
23.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
24.
E.
Darve
,
D.
Rodriguez-Gomez
, and
A.
Pohorille
,
J. Chem. Phys.
128
,
144120
(
2008
).
25.
E.
Darve
and
A.
Pohorille
,
J. Chem. Phys.
115
,
9169
(
2001
).
26.
J.
Comer
,
J. C.
Gumbart
,
J.
Henin
,
T.
Lelievre
,
A.
Pohorille
, and
C.
Chipot
,
J. Phys. Chem. B
119
,
1129
(
2015
).
27.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
28.
Y.
Okamoto
,
J. Mol. Graphics Modell.
22
,
425
(
2004
).
29.
H.
Grubmüller
,
Phys. Rev. E
52
,
2893
(
1995
).
30.
D.
Hamelberg
,
J.
Mongan
, and
J. A.
McCammon
,
J. Chem. Phys.
120
,
11919
(
2004
).
31.
D.
Hamelberg
,
C. A. F.
de Oliveira
, and
J. A.
McCammon
,
J. Chem. Phys.
127
,
155102
(
2007
).
32.
W.
Sinko
,
Y.
Miao
,
C. A. F.
de Oliveira
, and
J. A.
McCammon
,
J. Phys. Chem. B
117
,
12759
(
2013
).
33.
A. T.
Frank
and
I.
Andricioaei
,
J. Phys. Chem. B
120
,
8600
(
2016
).
34.
Y.
Miao
and
J. A.
McCammon
,
Mol. Simul.
42
,
1046
(
2016
).
35.
G.
Palermo
,
P.
Campomanes
,
A.
Cavalli
,
U.
Rothlisberger
, and
M.
De Vivo
,
J. Phys. Chem. B
119
,
789
(
2015
).
36.
T. Y.
Shen
and
D.
Hamelberg
,
J. Chem. Phys.
129
,
034103
(
2008
).
37.
Y.
Miao
,
V. A.
Feher
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
11
,
3584
(
2015
).
38.
A. F.
Voter
,
Phys. Rev. Lett.
78
,
3908
(
1997
).
39.
Y.
Miao
and
J. A.
McCammon
,
Annu. Rep. Comput. Chem.
13
,
231
(
2017
).
40.
Y.
Miao
and
J. A.
McCammon
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
12162
(
2016
).
41.
G.
Palermo
,
Y.
Miao
,
R. C.
Walker
,
M.
Jinek
, and
J. A.
McCammon
,
Proc. Natl. Acad. Sci.
114
,
7260
(
2017
).
42.
Y. T.
Pang
,
Y.
Miao
,
Y.
Wang
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
13
,
9
(
2017
).
43.
Y. T.
Wang
and
Y. H.
Chan
,
Sci. Rep.
7
,
7828
(
2017
).
44.
Y.
Miao
,
Y. M.
Huang
,
R. C.
Walker
,
J. A.
McCammon
, and
C. A.
Chang
,
Biochemistry
57
,
1533
(
2018
).
45.
P.
Tiwary
,
V.
Limongelli
,
M.
Salvalaglio
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
E386
(
2015
).
46.
R.
Casasnovas
,
V.
Limongelli
,
P.
Tiwary
,
P.
Carloni
, and
M.
Parrinello
,
J. Am. Chem. Soc.
139
,
4780
(
2017
).
47.
C. A. F.
De Oliveira
,
D.
Hamelberg
, and
J. A.
McCammon
,
J. Chem. Phys.
127
,
175105
(
2007
).
48.
D.
Hamelberg
,
T.
Shen
, and
J. A.
McCammon
,
J. Chem. Phys.
122
,
241103
(
2005
).
49.
Y.
Xin
,
U.
Doshi
, and
D.
Hamelberg
,
J. Chem. Phys.
132
,
224101
(
2010
).
50.
U.
Doshi
and
D.
Hamelberg
,
J. Chem. Theory Comput.
7
,
575
(
2011
).
51.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
52.
Y.
Miao
,
W.
Sinko
,
L.
Pierce
,
D.
Bucher
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
10
,
2677
(
2014
).
53.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
 III
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
R. C.
Walker
,
W.
Zhang
,
K. M.
Merz
,
B.
Roberts
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
J.
Swails
,
A. W.
Goetz
,
I.
Kolossváry
,
K. F.
Wong
,
F.
Paesani
,
J.
Vanicek
,
R. M.
Wolf
,
J.
Liu
,
X.
Wu
,
S. R.
Brozell
,
T.
Steinbrecher
,
H.
Gohlke
,
Q.
Cai
,
X.
Ye
,
J.
Wang
,
M.-J.
Hsieh
,
G.
Cui
,
D. R.
Roe
,
D. H.
Mathews
,
M. G.
Seetin
,
R.
Salomon-Ferrer
,
C.
Sagui
,
V.
Babin
,
T.
Luchko
,
S.
Gusarov
,
A.
Kovalenko
, and
P. A.
Kollman
, AMBER 12 (
University of California
,
San Francisco
,
2012
).
54.
A. W.
Gotz
,
M. J.
Williamson
,
D.
Xu
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
,
J. Chem. Theory Comput.
8
,
1542
(
2012
).
55.
R.
Salomon-Ferrer
,
A. W.
Götz
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
,
J. Chem. Theory Comput.
9
,
3878
(
2013
).
56.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
57.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
58.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Vangunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
59.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
60.
D. R.
Roe
and
T. E.
Cheatham
,
J. Chem. Theory Comput.
9
,
3084
(
2013
).

Supplementary Material

You do not currently have access to this content.