The numerical computation of chemical potential in dense non-homogeneous fluids is a key problem in the study of confined fluid thermodynamics. To this day, several methods have been proposed; however, there is still need for a robust technique, capable of obtaining accurate estimates at large average densities. A widely established technique is the Widom insertion method, which computes the chemical potential by sampling the energy of insertion of a test particle. Non-homogeneity is accounted for by assigning a density dependent weight to the insertion points. However, in dense systems, the poor sampling of the insertion energy is a source of inefficiency, hampering a reliable convergence. We have recently presented a new technique for the chemical potential calculation in homogeneous fluids. This novel method enhances the sampling of the insertion energy via well-tempered metadynamics, reaching accurate estimates at very large densities. In this paper, we extend the technique to the case of non-homogeneous fluids. The method is successfully tested on a confined Lennard-Jones fluid. In particular, we show that, thanks to the improved sampling, our technique does not suffer from a systematic error that affects the classic Widom method for non-homogeneous fluids, providing a precise and accurate result.

1.
G.
Job
and
F.
Herrmann
,
Eur. J. Phys.
27
,
353
(
2006
).
2.
R.
Baierlein
,
Am. J. Phys.
69
,
423
(
2001
).
3.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
4.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
5.
N.
Lu
and
D. A.
Kofke
,
J. Chem. Phys.
114
,
7303
(
2001
).
6.
N.
Lu
and
D. A.
Kofke
,
J. Chem. Phys.
115
,
6866
(
2001
).
7.
K.
Shing
and
K.
Gubbins
,
Mol. Phys.
46
,
1109
(
1982
).
8.
N.
Lu
and
D. A.
Kofke
,
J. Chem. Phys.
111
,
4414
(
1999
).
9.
T. C.
Beutler
,
D. R.
Béguelin
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
102
,
3787
(
1995
).
10.
K.
Ding
and
J. P.
Valleau
,
J. Chem. Phys.
98
,
3306
(
1993
).
11.
R.
Delgado-Buscalioni
,
G.
De Fabritiis
, and
P.
Coveney
,
J. Chem. Phys.
123
,
054105
(
2005
).
12.
G. C.
Boulougouris
,
J. Chem. Eng. Data
55
,
4140
(
2010
).
13.
S. G.
Moore
and
D. R.
Wheeler
,
J. Chem. Phys.
134
,
114514
(
2011
).
14.
A.
Agarwal
,
H.
Wang
,
C.
Schütte
, and
L. D.
Site
,
J. Chem. Phys.
141
,
034102
(
2014
).
15.
D. A.
Kofke
and
P. T.
Cummings
,
Mol. Phys.
92
,
973
(
1997
).
16.
N.
Lu
,
J. K.
Singh
, and
D. A.
Kofke
,
J. Chem. Phys.
118
,
2977
(
2003
).
17.
M. R.
Shirts
and
V. S.
Pande
,
J. Chem. Phys.
122
,
144107
(
2005
).
18.
K. B.
Daly
,
J. B.
Benziger
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Comput. Phys. Commun.
183
,
2054
(
2012
).
19.
G. S.
Heffelfinger
,
F.
van Swol
, and
K. E.
Gubbins
,
Mol. Phys.
61
,
1381
(
1987
).
20.
M. T.
Miyahara
and
H.
Tanaka
,
J. Chem. Phys.
138
,
084709
(
2013
).
21.
J.
Jiang
,
S. I.
Sandler
, and
B.
Smit
,
Nano Lett.
4
,
241
(
2004
).
22.
B.
Widom
,
J. Stat. Phys.
19
,
563
(
1978
).
23.
J. G.
Powles
,
S. E.
Baker
, and
W. A. B.
Evans
,
J. Chem. Phys.
101
,
4098
(
1994
).
24.
A. Z.
Panagiotopoulos
,
Mol. Phys.
62
,
701
(
1987
).
25.
B. K.
Peterson
and
K. E.
Gubbins
,
Mol. Phys.
62
,
215
(
1987
).
26.
A.
Papadopoulou
,
F.
van Swol
, and
U. M. B.
Marconi
,
J. Chem. Phys.
97
,
6942
(
1992
).
27.
M.
Miyahara
,
T.
Yoshioka
, and
M.
Okazaki
,
J. Chem. Phys.
106
,
8124
(
1997
).
28.
A. V.
Neimark
and
A.
Vishnyakov
,
J. Chem. Phys.
122
,
234108
(
2005
).
29.
C.
Perego
,
F.
Giberti
, and
M.
Parrinello
,
Eur. Phys. J.: Spec. Top.
225
,
1621
(
2016
).
30.
B.
Smit
and
D.
Frenkel
,
J. Phys.: Condens. Matter
1
,
8659
(
1989
).
31.
Q.-J.
Hong
and
A.
van de Walle
,
J. Chem. Phys.
137
,
094114
(
2012
).
32.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
33.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
,
Annu. Rev. Phys. Chem.
67
,
159
(
2016
).
34.
O.
Valsson
and
M.
Parrinello
,
Phys. Rev. Lett.
113
,
090601
(
2014
).
35.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
36.
Lammps, v. 30 July 2016, http://lammps.sandia.gov,
2016
.
37.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).
38.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
39.
T. C.
Beutler
,
A. E.
Mark
,
R. C.
van Schaik
,
P. R.
Gerber
, and
W. F.
van Gunsteren
,
Chem. Phys. Lett.
222
,
529
(
1994
).
40.
M.
Mezei
and
D. L.
Beveridge
,
Ann. N. Y. Acad. Sci.
482
,
1
(
1986
).

Supplementary Material

You do not currently have access to this content.