Recently, an equation of state (EoS) for the Lennard-Jones truncated and shifted (LJTS) fluid has become available. As it describes metastable and unstable states well, it is suited for predicting density profiles in vapor-liquid interfaces in combination with density gradient theory (DGT). DGT is usually applied to describe interfaces in Cartesian one-dimensional scenarios. In the present work, the perturbed LJ truncated and shifted (PeTS) EoS is implemented into a three-dimensional phase field (PF) model which can be used for studying inhomogeneous gas-liquid systems in a more general way. The results are compared with the results from molecular dynamics simulations for the LJTS fluid that are carried out in the present work and good agreement is observed. The PF model can therefore be used to overcome the scale limit of molecular simulations. A finite element approach is applied for the implementation of the PF model. This requires the first and second derivatives of the PeTS EoS which are calculated using hyper-dual numbers. Several tests and examples of applications of the new PeTS PF model are discussed.

1.
E. A.
Müller
and
A.
Mejía
, “
Interfacial properties of selected binary mixtures containing n-alkanes
,”
Fluid Phase Equilib.
282
(
2
),
68
81
(
2009
).
2.
E.
Schäfer
,
G.
Sadowski
, and
S.
Enders
, “
Interfacial tension of binary mixtures exhibiting azeotropic behavior: Measurement and modeling with PCP-SAFT combined with Density Gradient Theory
,”
Fluid Phase Equilib.
362
,
151
162
(
2014
).
3.
J. M.
Garrido
,
A.
Mejía
,
M. M.
Piñeiro
,
F. J.
Blas
, and
E. A.
Müller
, “
Interfacial tensions of industrial fluids from a molecular-based square gradient theory
,”
AIChE J.
62
(
5
),
1781
1794
(
2016
).
4.
J.
Mairhofer
and
J.
Gross
, “
Modeling of interfacial properties of multicomponent systems using density gradient theory and PCP-SAFT
,”
Fluid Phase Equilib.
439
,
31
42
(
2017
).
5.
A.
Mejía
,
M.
Cartes
,
H.
Segura
, and
E. A.
Müller
, “
Use of equations of state and coarse grained simulations to complement Experiments: Describing the interfacial properties of carbon dioxide + decane and carbon dioxide + eicosane mixtures
,”
J. Chem. Eng. Data
59
(
10
),
2928
2941
(
2014
).
6.
S.
Werth
,
M.
Kohns
,
K.
Langenbach
,
M.
Heilig
,
M.
Horsch
, and
H.
Hasse
, “
Interfacial and bulk properties of vapor-liquid equilibria in the system toluene + hydrogen chloride + carbon dioxide by molecular simulation and density gradient theory + PC-SAFT
,”
Fluid Phase Equilib.
427
,
219
230
(
2016
).
7.
S.
Becker
,
S.
Werth
,
M.
Horsch
,
K.
Langenbach
, and
H.
Hasse
, “
Interfacial tension and adsorption in the binary system ethanol and carbon dioxide: Experiments, molecular simulation and density gradient theory
,”
Fluid Phase Equilib.
427
,
476
487
(
2016
).
8.
C.
Cumicheo
,
M.
Cartes
,
H.
Segura
,
E. A.
Müller
, and
A.
Mejía
, “
High-pressure densities and interfacial tensions of binary systems containing carbon dioxide + n-alkanes: (n-Dodecane, n-tridecane, n-tetradecane)
,”
Fluid Phase Equilib.
380
,
82
92
(
2014
).
9.
O. G.
Niño Amézquita
,
S.
Enders
,
P. T.
Jaeger
, and
R.
Eggers
, “
Interfacial properties of mixtures containing supercritical gases
,”
J. Supercrit. Fluids
55
(
2
),
724
734
(
2010
).
10.
G.
Niño-Amézquita
,
D.
van Putten
, and
S.
Enders
, “
Phase equilibrium and interfacial properties of water + CO2 mixtures
,”
Fluid Phase Equilib.
332
,
40
47
(
2012
).
11.
N.
Moelans
,
B.
Blanpain
, and
P.
Wollants
, “
An introduction to phase-field modeling of microstructure evolution
,”
Calphad
32
(
2
),
268
294
(
2008
).
12.
K.-A.
Wu
and
A.
Karma
, “
Phase-field crystal modeling of equilibrium bcc-liquid interfaces
,”
Phys. Rev. B
76
(
18
),
121
(
2007
).
13.
D.
Danilov
,
B.
Nestler
,
M.
Guerdane
, and
H.
Teichler
, “
Bridging the gap between molecular dynamics simulations and phase-field modelling: Dynamics of a [NixZr1−x]liquid–Zrcrystal solidification front
,”
J. Phys. D: Appl. Phys.
42
(
1
),
015310
(
2009
).
14.
J.
Bragard
,
A.
Karma
,
Y. H.
Lee
, and
M.
Plapp
, “
Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts
,”
Interface Sci.
10
(
2/3
),
121
136
(
2002
).
15.
B.
Nestler
,
M.
Selzer
, and
D.
Danilov
, “
Phase-field simulations of nuclei and early stage solidification microstructures
,”
J. Phys.: Condens. Matter
21
(
46
),
464107
(
2009
).
16.
C. M.
Bishop
and
W.
Craig Carter
, “
Relating atomistic grain boundary simulation results to the phase-field model
,”
Comput. Mater. Sci.
25
(
3
),
378
386
(
2002
).
17.
B.
Völker
,
P.
Marton
,
C.
Elsässer
, and
M.
Kamlah
, “
Multiscale modeling for ferroelectric materials: A transition from the atomic level to phase-field modeling
,”
Continuum Mech. Thermodyn.
23
(
5
),
435
451
(
2011
).
18.
B.
Völker
,
C. M.
Landis
, and
M.
Kamlah
, “
Multiscale modeling for ferroelectric materials: Identification of the phase-field model’s free energy for PZT from atomistic simulations
,”
Smart Mater. Struct.
21
(
3
),
035025
(
2012
).
19.
V.
Vaithyanathan
,
C.
Wolverton
, and
L. Q.
Chen
, “
Multiscale modeling of precipitate microstructure evolution
,”
Phys. Rev. Lett.
88
(
12
),
125503
(
2002
).
20.
V.
Vaithyanathan
,
C.
Wolverton
, and
L. Q.
Chen
, “
Multiscale modeling of θ′ precipitation in Al–Cu binary alloys
,”
Acta Mater.
52
(
10
),
2973
2987
(
2004
).
21.
M.
Horsch
,
H.
Hasse
,
A. K.
Shchekin
,
A.
Agarwal
,
S.
Eckelsbach
,
J.
Vrabec
,
E. A.
Müller
, and
G.
Jackson
, “
Excess equimolar radius of liquid drops
,”
Phys. Rev. E
85
(
3 Pt 1
),
031605
(
2012
).
22.
A.
Lotfi
,
J.
Vrabec
, and
J.
Fischer
, “
Evaporation from a free liquid surface
,”
Int. J. Heat Mass Transfer
73
,
303
317
(
2014
).
23.
S.
Becker
,
H. M.
Urbassek
,
M.
Horsch
, and
H.
Hasse
, “
Contact angle of sessile drops in Lennard-Jones systems
,”
Langmuir
30
(
45
),
13606
13614
(
2014
).
24.
M.
Heinen
,
J.
Vrabec
, and
J.
Fischer
, “
Communication: Evaporation: Influence of heat transport in the liquid on the interface temperature and the particle flux
,”
J. Chem. Phys.
145
(
8
),
081101
(
2016
).
25.
M.
Horsch
,
S.
Miroshnichenko
, and
J.
Vrabec
, “
Steady-state molecular dynamics simulation of vapour to liquid nucleation with McDonald’s deamon
,”
J. Phys. Stud.
13
(
4
),
4004
(
2009
).
26.
M.
Horsch
,
M.
Heitzig
,
C.
Dan
,
J.
Harting
,
H.
Hasse
, and
J.
Vrabec
, “
Contact angle dependence on the fluid-wall dispersive energy
,”
Langmuir
26
(
13
),
10913
10917
(
2010
).
27.
M.
Horsch
,
J.
Vrabec
, and
H.
Hasse
, “
Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate
,”
Phys. Rev. E
78
(
1
),
011603
(
2008
).
28.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
, “
Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties
,”
Mol. Phys.
104
(
9
),
1509
1527
(
2006
).
29.
M.
Heier
,
S.
Stephan
,
J.
Liu
,
W. G.
Chapman
,
H.
Hasse
, and
K.
Langenbach
, “
Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5σ based on perturbation theory and its applications to interfacial thermodynamics
,”
Mol. Phys.
116
(
15–16
),
2083
2094
(
2018
).
30.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
, “
The Lennard-Jones equation of state revisited
,”
Mol. Phys.
78
(
3
),
591
618
(
1993
).
31.
M.
Thol
,
G.
Rutkai
,
R.
Span
,
J.
Vrabec
, and
R.
Lustig
, “
Equation of state for the Lennard-Jones truncated and shifted model fluid
,”
Int. J. Thermophys.
36
(
1
),
25
43
(
2015
).
32.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Sharp-interface limit of the Cahn–Hilliard model for moving contact lines
,”
J. Fluid Mech.
645
,
279
(
2010
).
33.
D. N.
Sibley
,
A.
Nold
, and
S.
Kalliadasis
, “
Unifying binary fluid diffuse-interface models in the sharp-interface limit
,”
J. Fluid Mech.
736
,
5
43
(
2013
).
34.
J. A.
Fike
and
J. J.
Alonso
, “
The development of hyper-dual numbers for exact second derivative calculations
,” in
49th AIAA Aerospace Sciences Meeting AIAA 2011-886
(
American Institute of Aeronautics and Astronautics
,
2011
), pp.
1
17
.
35.
J. A.
Fike
, Multi-Objective Optimization using Hyper-Dual Numbers: A Dissertation Submitted to the Department of Aeronaitics and Astronautics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.
36.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
(
2
),
258
(
1958
).
37.
F.
Diewald
,
C.
Kuhn
,
M.
Heier
,
K.
Langenbach
,
M.
Horsch
,
H.
Hasse
, and
R.
Müller
, “
Investigating the stability of the phase field solution of equilibrium droplet configurations by eigenvalues and eigenvectors
,”
Comput. Mater. Sci.
141
,
185
192
(
2018
).
38.
J. W.
Cahn
and
S. M.
Allen
, “
A microscopic theory for domain wall motion and its experimental verification in Fe–Al alloy domain growth kinetics
,”
J. Phys. Colloq.
38
(
C7
),
C7-51
C7-54
(
1977
).
39.
M.
Ben Said
,
M.
Selzer
,
B.
Nestler
,
D.
Braun
,
C.
Greiner
, and
H.
Garcke
, “
A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces
,”
Langmuir
30
(
14
),
4033
4039
(
2014
).
40.
F.
Diewald
,
C.
Kuhn
,
R.
Blauwhoff
,
M.
Heier
,
S.
Becker
,
S.
Werth
,
M.
Horsch
,
H.
Hasse
, and
R.
Müller
, “
Simulation of surface wetting by droplets using a phase field model
,”
PAMM
16
(
1
),
519
520
(
2016
).
41.
F.
Diewald
,
C.
Kuhn
,
M.
Heier
,
M.
Horsch
,
K.
Langenbach
,
H.
Hasse
, and
R.
Müller
, “
Surface Wetting with droplets: A phase field approach
,”
PAMM
17
(
1
),
501
502
(
2017
).
42.
See http://projects.ce.berkeley.edu/feap/ for FEAP-a finite element analysis program.
43.
C.
Niethammer
,
S.
Becker
,
M.
Bernreuther
,
M.
Buchholz
,
W.
Eckhardt
,
A.
Heinecke
,
S.
Werth
,
H.-J.
Bungartz
,
C. W.
Glass
,
H.
Hasse
,
J.
Vrabec
, and
M.
Horsch
, “
ls1 mardyn: The massively parallel molecular dynamics code for large systems
,”
J. Chem. Theory Comput.
10
(
10
),
4455
4464
(
2014
).
44.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
(
4
),
2384
2393
(
1980
).
45.
J.
Lekner
and
J. R.
Henderson
, “
Theoretical determination of the thickness of a liquid-vapour interface
,”
Phys. A
94
(
3-4
),
545
558
(
1978
).
46.
T.
Hofmann
, “
Phase-field methods for deformation processes in lithium-ion batteries
,” Ph.D. thesis,
Technische Universität Kaiserslautern
,
2018
, URL http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-52196.
47.
M.
Volmer
and
A.
Weber
, “
Keimbildung in übersättigten gebilden
,”
Z. Phys. Chem.
119U
(
1
),
277
301
(
1926
).
48.
L.
Farkas
, “
Keimbildungsgeschwindigkeit in übersättigten dämpfen
,”
Z. Phys. Chem.
125U
(
1
),
236
242
(
1927
).
49.
J.
Hrubý
,
D. G.
Labetski
, and
M. E. H.
van Dongen
, “
Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters
,”
J. Chem. Phys.
127
(
16
),
164720
(
2007
).
50.
V. I.
Kalikmanov
,
Nucleation Theory
(
Springer Netherlands
,
Dordrecht
,
2013
), Vol. 860.
51.
A. H.
Falls
,
L. E.
Scriven
, and
H. T.
Davis
, “
Structure and stress in spherical microstructures
,”
J. Chem. Phys.
75
(
8
),
3986
4002
(
1981
).
52.
K.
Langenbach
,
M.
Heilig
,
M.
Horsch
, and
H.
Hasse
, “
Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory
,”
J. Chem. Phys.
148
(
12
),
124702
(
2018
).
You do not currently have access to this content.