We use a direct product basis, basis vectors computed by evaluating matrix-vector products, and rank reduction to calculate vibrational energy levels of uracil and naphthalene, with 12 and 18 atoms, respectively. A matrix representing the Hamiltonian in the direct product basis and vectors with as many components as there are direct product basis functions are neither calculated nor stored. We also introduce an improvement of the Hierarchical Intertwined Reduced-Rank Block Power Method (HI-RRBPM), proposed previously in Thomas and Carrington, Jr. [J. Chem. Phys. 146, 204110 (2017)]. It decreases the memory cost of the HI-RRBPM and enables one to compute vibrational spectra of molecules with over a dozen atoms with a typical desktop computer.

1.
J.
Bloino
and
V.
Barone
,
J. Chem. Phys.
136
,
124108
(
2012
).
2.
J.
Tennyson
,
Comput. Phys. Rep.
4
,
1
(
1986
).
3.
S.
Carter
and
N. C.
Handy
,
Comput. Phys. Commun.
51
,
49
(
1988
).
4.
T.
Carrington
,
J. Chem. Phys.
146
,
120902
(
2017
).
5.
M. J.
Bramley
and
T.
Carrington
,
J. Chem. Phys.
99
,
8519
8541
(
1993
).
6.
J.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
2182
(
2008
).
7.
A. G.
Csaszar
,
C.
Fabri
,
T.
Szidarovszky
,
E.
Matyus
,
T.
Furtenbacher
, and
G.
Czako
,
Phys. Chem. Chem. Phys.
14
(
3
),
1085
1106
(
2012
).
8.
R.
Chen
,
G.
Ma
, and
H.
Guo
,
J. Chem. Phys.
114
,
4763
4774
(
2001
).
9.
C.
Iung
and
C.
Leforestier
,
J. Chem. Phys.
102
,
8453
(
1995
).
10.
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
11.
M.
Majumder
,
S.
Alexandre Ndengue
, and
R.
Dawes
,
Mol. Phys.
114
,
1
(
2016
).
12.
C.
Leforestier
,
L. B.
Braly
,
K.
Liu
,
M. J.
Elrod
, and
R. J.
Saykally
,
J. Chem. Phys.
106
,
8527
(
1997
).
13.
D.
Gottlieb
and
S.
Orszag
,
Numerical Analysis of Spectral Methods
(
Society for Industrial and Applied Mathematics
,
1977
).
14.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
310
(
2000
).
15.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
131
(
17
),
174103
(
2009
).
16.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
134
,
054126
(
2011
).
17.
S.
Manzhos
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
145
,
224110-1
224110-9
(
2016
).
18.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
138
,
104106-1
104106-20
(
2013
).
19.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
143
,
214108
(
2015
).
20.
G. D.
Carney
,
L. L.
Sprandel
, and
C. W.
Kern
,
Adv. Chem. Phys.
37
,
305
(
1978
).
21.
B.
Poirier
,
J. Theor. Comput. Chem.
02
,
65
(
2003
).
22.
R.
Dawes
and
T.
Carrington
,
J. Chem. Phys.
122
,
134101
(
2005
).
23.
L.
Halonen
,
D. W.
Noid
, and
M.
Child
,
J. Chem. Phys.
78
,
2803
(
1983
).
24.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
25.
R.
Garnier
,
M.
Odunlami
,
V.
Le Bris
,
D.
Begue
,
I.
Baraille
, and
O.
Coulaud
,
J. Chem. Phys.
144
,
204123
(
2016
).
26.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
27.
M.
Sibaev
and
D. L.
Crittenden
,
J. Chem. Phys.
145
,
064106
(
2016
).
28.
J.
Cooper
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
130
,
214110
(
2009
).
29.
J.
Brown
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
145
,
144104
(
2016
).
30.
R.
Barrett
,
M.
Berry
,
T. F.
Chan
,
J.
Demmel
,
J.
Donato
,
J.
Dongarra
,
V.
Eijkhout
,
R.
Pozo
,
C.
Romine
, and
H.
Van der Vorst
,
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
, 2nd ed. (
SIAM
,
Philadelphia, PA
,
1994
).
31.
A.
Leclerc
and
T.
Carrington
,
J. Chem. Phys.
140
,
174111
(
2014
).
32.
P. S.
Thomas
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
146
,
204110
(
2017
).
33.
R. A.
Harshman
,
Foundations of the PARAFAC procedure: Model and Conditions for an “Explanatory” Multimodal Factor Analysis
, Working Papers in Phonetics 16 (
UCLA
,
1970
), pp.
1
84
; available at http://publish.uwo.ca/∼harshman/wpppfac0.pdf.
34.
T. G.
Kolda
and
B. W.
Bader
,
SIAM Rev.
51
,
455
(
2009
).
35.
P. S.
Thomas
and
T.
Carrington
, Jr.
,
J. Phys. Chem. A
119
,
13074
(
2015
).
36.
A.
Leclerc
and
T.
Carrington
, Jr.
,
Chem. Phys. Lett.
644
,
183
(
2016
).
37.
A.
Leclerc
,
P. S.
Thomas
, and
T.
Carrington
, Jr.
,
Mol. Phys.
115
,
1740
(
2017
).
38.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
39.
M. H.
Beck
,
A.
Jaeckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
40.
L. R.
Tucker
,
Psychometrika
31
,
279
(
1966
).
41.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
42.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
43.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
44.
45.
R.
Wodraszka
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
145
,
044110
(
2016
).
46.
H. R.
Larsson
,
B.
Hartke
, and
D. J.
Tannor
,
J. Chem. Phys.
145
,
204108
(
2016
).
47.
R.
Wodraszka
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
146
,
194105
(
2017
).
48.
H. R.
Larsson
and
D. J.
Tannor
,
J. Chem. Phys.
147
,
044103
(
2017
).
49.
P.
Seidler
,
M. B.
Hansen
, and
O.
Christiansen
,
J. Chem. Phys.
128
,
154113
(
2008
).
50.
N. K.
Madsen
,
I. H.
Godtliebsen
,
S. A.
Losilla
, and
O.
Christiansen
,
J. Chem. Phys.
148
,
024103
(
2018
).
51.
M.
Rakhuba
and
I.
Oseledets
,
J. Chem. Phys.
145
,
124101
(
2016
).
52.
K. H.
Marti
and
M.
Reiher
,
Z. Phys. Chem.
224
,
583
599
(
2010
).
53.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
,
J. Chem. Phys.
142
,
034102
(
2015
).
54.
J.
Jerke
and
B.
Poirier
,
J. Chem. Phys.
148
,
104101
(
2018
).
55.
Y.
Saad
,
Numerical Methods for Large Eigenvalue Problems
(
Siam
,
2011
).
56.
M. J.
Bramley
and
N. C.
Handy
,
J. Chem. Phys.
98
,
1378
(
1993
).
57.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
117
,
6923
(
2002
).
58.
P.
Cassam-Chenai
and
J.
Liévin
,
J. Comput. Chem.
27
,
627
(
2006
).
59.
G.
Beylkin
and
M. J.
Mohlenkamp
,
SIAM J. Sci. Comput.
26
,
2133
(
2005
).
60.
G. H.
Golub
and
C. F. V.
Loan
,
Matrix Computations
, 3rd ed. (
John Hopkins University Press
,
Baltimore, MD
,
1996
).
61.
I. M.
Mills
,
Vibration-Rotation Structure in Asymmetric and Symmetric Top Molecules
(
Academic Press
,
New York
,
1972
), Vol. 1, p.
115
.
62.
J. K. G.
Watson
,
Mol. Phys.
15
,
479
(
1968
).
63.
S. V.
Krasnoshchekov
,
N.
Vogt
, and
N. F.
Stepanov
,
J. Phys. Chem. A
119
,
6723
(
2015
).
64.
G. N.
Ten
,
V. V.
Nechaev
, and
S. V.
Krasnoshchekov
,
Opt. Spectrosc.
108
,
37
(
2010
).
65.
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theor. Comput.
7
,
3702
(
2011
).
66.
T.
Fornaro
,
M.
Biczysko
,
S.
Monti
, and
V.
Barone
,
Phys. Chem. Chem. Phys.
16
,
10112
(
2014
).
67.
T.
Fornaro
,
I.
Carnimeo
, and
M.
Biczysko
,
J. Phys. Chem. A
119
,
5313
(
2015
).
68.
T.
Carrington
,
Mol. Phys.
70
,
757
766
(
1990
).
69.
V.
Librando
,
A.
Alparone
, and
Z.
Minniti
,
J. Mol. Struct.: THEOCHEM
847
,
23
(
2007
).
70.
E.
Cané
,
A.
Miani
, and
A.
Trombetti
,
J. Phys. Chem. A
111
,
8218
(
2007
).
71.
M.
Basire
,
P.
Parneix
,
F.
Calvo
,
T.
Pino
, and
P.
Bréchignac
,
J. Phys. Chem. A
113
,
6947
(
2009
).
72.
J.
Bloino
,
J. Phys. Chem. A
119
,
5269
(
2015
).
73.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
E.
Maltseva
,
A.
Petrignani
,
J.
Oomens
,
W. J.
Buma
,
T. J.
Lee
, and
A. G. G. M.
Tielens
,
J. Chem. Phys.
143
,
224314
(
2015
).
74.
S.
Chakraborty
,
S.
Banik
, and
P. K.
Das
,
J. Phys. Chem. A
120
,
9707
(
2016
).
75.
O.
Pirali
,
M.
Goubet
,
T. R.
Huet
,
R.
Georges
,
P.
Soulard
,
P.
Asselin
,
J.
Courbe
,
P.
Roy
, and
M.
Vervloet
,
Phys. Chem. Chem. Phys.
15
,
10141
(
2013
).
76.
O.
Pirali
,
N.-T.
Van-Oanh
,
P.
Parneix
,
M.
Vervloet
, and
P.
Bréchignac
,
Phys. Chem. Chem. Phys.
8
,
3707
(
2006
).
77.
O.
Pirali
,
M.
Vervloet
,
G.
Mulas
,
G.
Malloci
, and
C.
Joblin
,
Phys. Chem. Chem. Phys.
11
,
3443
(
2009
).
78.
S.
Albert
,
K. K.
Albert
,
P.
Lerch
, and
M.
Quack
,
Faraday Discuss.
150
,
71
(
2011
).
79.
K.
Ravindra
,
R.
Sokhi
, and
R.
van Grieken
,
Atmos. Environ.
42
,
2895
(
2008
).
80.
A.
Léger
and
J.
Puget
,
Astron. Astrophys.
137
,
L5
(
1984
), available at http://adsabs.harvard.edu/full/1984A%26A...137L...5L.

Supplementary Material

You do not currently have access to this content.