As in Paper I of this series of papers [S. M. Cattes et al., J. Chem. Phys. 144, 194704 (2016)], we study a Heisenberg fluid confined to a nanoscopic slit pore with smooth walls. The pore walls can either energetically discriminate specific orientations of the molecules next to them or are indifferent to molecular orientations. Unlike in Paper I, we employ a version of classical density functional theory that allows us to explicitly account for the stratification of the fluid (i.e., the formation of molecular layers) as a consequence of the symmetry-breaking presence of the pore walls. We treat this stratification within the White Bear version (Mark I) of fundamental measure theory. Thus, in this work, we focus on the interplay between local packing of the molecules and orientational features. In particular, we demonstrate why a critical end point can only exist if the pore walls are not energetically discriminating specific molecular orientations. We analyze in detail the positional and orientational order of the confined fluid and show that reorienting molecules across the pore space can be a two-dimensional process. Last but not least, we propose an algorithm based upon a series expansion of Bessel functions of the first kind with which we can solve certain types of integrals in a very efficient manner.

1.
B.
Groh
and
S.
Dietrich
,
Phys. Rev. E
50
,
3814
(
1994
).
2.
H.
Zhang
and
M.
Widom
,
Phys. Rev. E
49
,
267203
(
1994
).
3.
B.
Groh
and
S.
Dietrich
,
Phys. Rev. E
63
,
021203
(
1994
).
4.
G. M.
Range
and
S. H. L.
Klapp
,
Phys. Rev. E
69
,
041201
(
2004
).
5.
E.
Lomba
,
J. J.
Weis
, and
G.
Stell
,
Phys Rev. E
50
,
3853
(
1994
).
6.
J. M.
Tavares
,
M. M.
Telo da Gama
,
P. I. C.
Teixeira
,
J. J.
Weis
, and
M. J. P.
Nijmeijer
,
Phys. Rev. E
52
,
1915
(
1995
).
7.
A.
Oukouiss
and
M.
Baus
,
Phys. Rev. E
55
,
7242
(
1997
).
8.
E.
Lomba
,
J. J.
Weis
, and
C. F.
Tejero
,
Phys. Rev. E
58
,
3426
(
1998
).
9.
F.
Lado
,
E.
Lomba
, and
J. J.
Weis
,
Phys. Rev. E
58
,
3478
(
1998
).
10.
M.
Schoen
,
S.
Giura
, and
S. H. L.
Klapp
,
Phys. Rev. E
89
,
012310
(
2014
).
11.
M.
Gramzow
and
S. H. L.
Klapp
,
Phys. Rev. E
75
,
011605
(
2007
).
12.
I.
Szalai
and
S.
Dietrich
,
Eur. Phys. J. E
28
,
347
(
2009
).
14.
S. M.
Cattes
,
K. E.
Gubbins
, and
M.
Schoen
,
J. Chem. Phys.
144
,
194704
(
2016
).
15.
16.
Y.
Rosenfeld
,
D.
Levesque
, and
J.-J.
Weis
,
J. Chem. Phys.
92
,
6818
(
1990
).
17.
P.
Tarazona
and
R.
Evans
,
Mol. Phys.
52
,
847
(
1984
).
18.
P.
Tarazona
,
Phys. Rev. A
31
,
2672
(
1985
).
19.
A. R.
Denton
and
N. W.
Ashcroft
,
Phys. Rev. A
39
,
4701
(
1989
).
20.
R.
Leidl
and
H.
Wagner
,
J. Chem. Phys.
98
,
4142
(
1993
).
21.
E.
Kierlik
and
M. L.
Rosinberg
,
Phys. Rev. A
42
,
3382
(
1990
).
22.
S.
Phan
,
E.
Kierlik
,
M. L.
Rosinberg
,
B.
Bildstein
, and
G. G.
Kahl
,
Phys. Rev. E
48
,
618
(
1993
).
23.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
24.
R.
Roth
,
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
25.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, Jr.
,
J. Chem. Phys.
54
,
1523
(
1971
).
26.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1970
).
27.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Elsevier
,
Burlington
,
2006
).
28.
A. J.
Archer
and
R.
Evans
,
J. Chem. Phys.
138
,
014502
(
2013
).
29.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids
(
Clarendon Press
,
Oxford
,
1984
), Vol. 1.
30.
M.
Schoen
,
A. J.
Haslam
, and
G.
Jackson
,
Langmuir
33
,
11345
(
2017
).
31.
K. E.
Gubbins
and
C. G.
Gray
,
Mol. Phys.
23
,
187
(
1972
).
32.
A. J.
Archer
,
B.
Chacko
, and
R.
Evans
,
J. Chem. Phys.
147
,
034501
(
2017
).
33.
R.
Roth
and
S.
Dietrich
,
Phys. Rev. E
62
,
6926
(
2000
).
34.
I. N.
Bronštejn
and
K. A.
Semendjaev
,
A Guide Book to Mathematics Fundamental Formulas–Tables–Graphs–Methods
(
Springer-Verlag
,
New York
,
2012
).
35.
S.
Giura
,
B. G.
Márkus
,
S. H. L.
Klapp
, and
M.
Schoen
,
Phys. Rev. E
87
,
012313
(
2013
).
36.
S. M.
Wandrei
,
D. G.
McCarthy
, and
M.
Schoen
,
Langmuir
33
,
11366
(
2017
).
37.
L.
Vega
,
E.
de Miguel
,
L. F.
Rull
,
G.
Jackson
, and
I. A.
McLure
,
J. Chem. Phys.
96
,
2296
(
1992
).
38.
J. R.
Henderson
and
F.
van Swol
,
J. Chem. Phys.
89
,
5010
(
1988
).
39.
M.
Thommes
and
G. H.
Findenegg
,
Langmuir
10
,
4270
(
1994
).
40.
K.
Morishige
and
M.
Ito
,
J. Chem. Phys.
117
,
8036
(
2002
).
41.
S. M.
Cattes
,
S. H. L.
Klapp
, and
M.
Schoen
,
Phys. Rev. E
91
,
052127
(
2015
).
42.
M.
Greschek
and
M.
Schoen
,
Soft Matter
6
,
4931
(
2010
).
43.
J.
Jordanovic
and
S. H. L.
Klapp
,
Phys. Rev. Lett.
101
,
038302
(
2008
).
44.
J.
Jordanovic
and
S. H. L.
Klapp
,
Phys. Rev. E
79
,
021405
(
2009
).
45.
M.
Kamalvand
,
T.
Keshavarzi
, and
G. A.
Mansoori
,
Int. J. Nanosci.
07
,
245
(
2008
).
You do not currently have access to this content.