The solubility of a crystalline material can be estimated from the absolute free energy of the solid and the excess solvation free energy. In the earlier work, we presented a general-purpose molecular-dynamics-based methodology enabling solubility predictions of crystalline compounds, yielding accurate estimates of the aqueous solubilities of naphthalene at various pressures and temperatures. In the present work, we investigate a number of prototypical complex materials, including phenanthrene, calcite, and aragonite over a range of temperatures and pressures. Our results provide stronger evidence for the power of the methodology for universal solubility predictions.
REFERENCES
1.
G. L.
Amidon
, H.
Lennernäs
, V. P.
Shah
, and J. R.
Crison
, “A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability
,” Pharm. Res.
12
, 413
(1995
).2.
W. L.
Jorgensen
and E. M.
Duffy
, “Prediction of drug solubility from structure
,” Adv. Drug Delivery Rev.
54
, 355
–366
(2002
).3.
W. L.
Jorgensen
and E. M.
Duffy
, “Prediction of drug solubility from Monte Carlo simulations
,” Bioorg. Med. Chem. Lett.
10
, 1155
(2000
).4.
S. J.
Park
and G. A.
Mansoori
, “Aggregation and deposition of heavy organics in petroleum crudes
,” Energy Sources
10
, 109
(1988
).5.
K.
Raju
and G.
Atkinson
, “Thermodynamics of “scale” mineral solubitities. 1. BaSO4(s) in H2O and aqueous NaCl
,” J. Chem. Eng. Data
33
, 490
(1988
).6.
K. U. G.
Raju
and G.
Atkinson
, “Thermodynamics of “scale” mineral solubitities. 3. Calcium sulfate in aqueous NaCl
,” J. Chem. Eng. Data
35
, 361
(1990
).7.
T.
Chen
, A.
Neville
, and M.
Yuan
, “Calcium carbonate scale formation—assessing the initial stages of precipitation and deposition
,” J. Pet. Sci. Eng.
46
, 185
–194
(2005
).8.
J. R.
Espinosa
, J. M.
Young
, H.
Jiang
, D.
Gupta
, C.
Vega
, E.
Sanz
, P. G.
Debenedetti
, and A. Z.
Panagiotopoulos
, “On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures
,” J. Chem. Phys.
145
, 154111
(2016
).9.
J.
Kolafa
, “Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field
,” J. Chem. Phys.
145
, 204509
(2016
).10.
M.
Lísal
, W. R.
Smith
, and J.
Kolafa
, “Molecular simulations of aqueous electrolyte solubility: 1. The expanded–ensemble osmotic molecular dynamics method for the solution phase
,” J. Phys. Chem. B
109
, 12956
(2005
).11.
F.
Moučka
, M.
Lísal
, and W. R.
Smith
, “Molecular simulation of aqueous electrolyte solubility. 3. Alkali–halide salts and their mixtures in water and in hydrochloric acid
,” J. Phys. Chem. B
116
, 5468
(2012
).12.
F.
Moučka
, I.
Nezbeda
, and W. R.
Smith
, “Chemical potentials, activity coefficients, and solubility in aqueous NaCl Solutions: Prediction by polarizable force fields
,” J. Chem. Theory Comput.
11
, 1756
(2015
).13.
I.
Nezbeda
, F.
Moučka
, and W. R.
Smith
, “Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility
,” Mol. Phys.
114
, 1665
(2016
).14.
M.
Ferrario
, G.
Ciccotti
, E.
Spohr
, T.
Cartailler
, and P.
Turq
, “Solubility of KF in water by molecular dynamics using the Kirkwood integration method
,” J. Chem. Phys.
117
, 4947
(2002
).15.
H. M.
Manzanilla-Granados
, H.
Saint-Martín
, R.
Fuentes-Azcatl
, and J.
Alejandre
, “Direct coexistence methods to determine the solubility of salts in water from numerical simulations. Test case NaCl
,” J. Phys. Chem. B
119
, 8389
(2015
).16.
J. L.
Aragones
, E.
Sanz
, and C.
Vega
, “Solubility of NaCl in water by molecular simulation revisited
,” J. Chem. Phys.
136
, 244508
(2012
).17.
A. L.
Benavides
, J. L.
Aragones
, and C.
Vega
, “Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
,” J. Chem. Phys.
144
, 124504
(2016
).18.
A. S.
Paluch
, S.
Jayaraman
, J. K.
Shah
, and E. J.
Maginn
, “A method for computing the solubility limit of solids: Application to sodium chloride in water and alcohols
,” J. Chem. Phys.
133
, 124504
(2010
).19.
Z.
Mester
and A. Z.
Panagiotopoulos
, “Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations
,” J. Chem. Phys.
142
, 044507
(2015
).20.
Z.
Mester
and A. Z.
Panagiotopoulos
, “Temperature–dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations
,” J. Chem. Phys.
143
, 044505
(2015
).21.
F.
Moucka
, M.
Lisal
, J.
Skvor
, J.
Jirsak
, I.
Nezbeda
, and W. R.
Smith
, “Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl
,” J. Phys. Chem. B
115
, 7849
(2011
).22.
M. J.
Schnieders
, J.
Baltrusaitis
, Y.
Shi
, G.
Chattree
, L.
Zheng
, W.
Yang
, and P.
Ren
, “The structure, thermodynamics, and solubility of organic crystals from simulation with a polarizable force field
,” J. Chem. Theory Comput.
8
, 1721
(2012
).23.
D. S.
Palmer
, J. L.
McDonagh
, J. B. O.
Mitchell
, T.
Van Mourik
, and M. V.
Fedorov
, “First-principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules
,” J. Chem. Theory Comput.
8
, 3322
(2012
).24.
J. C.
Dearden
, “In silico prediction of aqueous solubility
,” Expert Opin. Drug Discovery
1
, 31
(2006
).25.
A. S.
Paluch
and E. J.
Maginn
, “Predicting the solubility of solid phenanthrene: A combined molecular simulation and group contribution approach
,” AIChE J.
59
, 2647
(2013
).26.
M. J.
Lazzaroni
, D.
Bush
, C. A.
Eckert
, T. C.
Frank
, S.
Gupta
, and J. D.
Olson
, “Revision of MOSCED parameters and extension to solid solubility calculations
,” Ind. Eng. Chem. Res.
44
, 4075
(2005
).27.
R. T.
Ley
, G. B.
Fuerst
, B. N.
Redeker
, and A. S.
Paluch
, “Developing a predictive form of MOSCED for nonelectrolyte solids using molecular simulation: Application to acetanilide, acetaminophen, and phenacetin
,” Ind. Eng. Chem. Res.
55
, 5415
(2016
).28.
S.
Cabani
, G.
Mollica
, and V.
Lepori
, “Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution
,” J. Solution Chem.
10
, 563
(1981
).29.
L.
Li
, T.
Totton
, and D.
Frenkel
, “Computational methodology for solubility prediction: Application to simple aromatic crystals
,” J. Chem. Phys.
146
, 214110
(2017
).30.
S.
Plimpton
, “Fast parallel algorithms for short-range molecular dynamics
,” J. Comput. Phys.
117
, 1
(1995
).31.
R. W.
Zwanzig
, “High-Temperature equation of state by a perturbation method. I. Nonpolar gases
,” J. Chem. Phys.
22
, 1420
(1954
).32.
R. W.
Zwanzig
, “High-Temperature equation of state by a perturbation method. II. Polar gases
,” J. Chem. Phys.
23
, 1915
(1955
).33.
D. A.
Kofke
and P. T.
Cummings
, “Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation
,” Mol. Phys.
92
, 973
(1997
).34.
D.
Frenkel
and B.
Smith
, Understanding Molecular Simulations
, 2nd ed. (Academic, London
, 2002
).35.
P.
Kollman
, “Free energy calculations: Applications to chemical and biochemical phenomena
,” Chem. Rev.
93
, 2395
(1993
).36.
J. G.
Kirkwood
, “Statistical mechanics of fluid mixtures
,” J. Chem. Phys.
3
, 300
(1935
).37.
W. L.
Jorgensen
, J. F.
Blake
, and J. K.
Buckner
, “Free energy of TIP4P water and the free energies of hydration of CH4 and Cl− from statistical perturbation theory
,” Chem. Phys.
129
, 193
(1989
).38.
D.
Shivakumar
, J.
Williams
, Y. J.
Wu
, W.
Damm
, J.
Shelley
, and W.
Sherman
, “Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field
,” J. Chem. Theory Comput.
6
, 1509
(2010
).39.
D.
Frenkel
and A. J.
Ladd
, “New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,” J. Chem. Phys.
81
, 3188
(1984
).40.
E. J.
Meijer
, D.
Frenkel
, R. A.
LeSar
, and A. J. C.
Ladd
, “Location of melting point at 300 K of nitrogen by Monte Carlo simulation
,” J. Chem. Phys.
92
, 7570
(1990
).41.
C.
Vega
, E.
Sanz
, J. L. F.
Abascal
, and E. G.
Noya
, “Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins
,” J. Phys.: Condens. Matter
20
, 153101
(2008
).42.
J. L.
Aragones
, C.
Valeriani
, and C.
Vega
, “Note: Free energy calculations for atomic solids through the Einstein crystal/molecule methodology using GROMACS and LAMMPS
,” J. Chem. Phys.
137
, 146101
(2012
).43.
J. L.
Aragones
, E. G.
Noya
, C.
Valeriani
, and C.
Vega
, “Free energy calculations for molecular solids using GROMACS
,” J. Chem. Phys.
139
, 034104
(2013
).44.
K.
Ioannidou
, M.
Kanduč
, L.
Li
, D.
Frenkel
, J.
Dobnikar
, and E. D.
Gado
, “The crucial effect of early-stage gelation on the mechanical properties of cement hydrates
,” Nat. Commun.
7
, 012106
(2016
).45.
M. S.
Sellers
, M.
Lísal
, and J. K.
Brennan
, “Free–energy calculations using classical molecular simulation: Application to the determination of the melting point and chemical potential of a flexible RDX model
,” Phys. Chem. Chem. Phys.
18
, 7841
(2016
).46.
47.
W. G.
Hoover
, “Entropy for small classical crystals
,” J. Chem. Phys.
49
, 1981
(1968
).48.
J.
Polson
, E.
Trizac
, S.
Pronk
, and D.
Frenkel
, “Finite-size corrections to the free energies of crystalline solids
,” J. Chem. Phys.
112
, 5339
(2000
).49.
T.
Steinbrecher
, D. L.
Mobley
, and D. A.
Case
, “Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculation
,” J. Chem. Phys.
127
, 214108
(2007
).50.
T.
Simonson
, “Free energy of particle insertion
,” Mol. Phys.
80
, 441
(1993
).51.
J. P. M.
Postma
, H. J. C.
Berendsen
, and J. R.
Haak
, “Thermodynamics of cavity formation in water a molecular dynamics study
,” Faraday Symp. Chem. Soc.
17
, 55
(1982
).52.
W. L.
Jorgensen
, D. S.
Maxwell
, and J.
Tirado-Rives
, “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,” J. Am. Chem. Soc.
118
, 11225
(1996
).53.
H. J. C.
Berendsen
, J. P. M.
Postma
, W. F.
van Gunsteren
, and J.
Hermans
, in Intermolecular Forces
, edited by B.
Pullman
(Reidel
, Dordrecht
, 1981
), p. 331
.54.
P.
Raiteri
, J. D.
Gale
, D.
Quigley
, and P. M.
Rodger
, “Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: A new model for the calcite-water interface
,” J. Phys. Chem. C
114
, 5997
(2010
).55.
P.
Raiteri
and J. D.
Gale
, “Water is the key to nonclassical nucleation of amorphous calcium carbonate
,” J. Am. Chem. Soc.
132
, 17623
(2010
).56.
P.
Raiteri
, J. D.
Gale
, D.
Quigley
, and D.
Gebauer
, “Stable prenucleation mineral clusters are liquid-like ionic polymers
,” Nat. Commun.
2
, 590
(2011
).57.
P.
Raiteri
, R.
Demichelis
, and J. D.
Gale
, “A thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation
,” J. Phys. Chem. C
119
, 24447
(2015
).58.
Y.
Wu
, H. L.
Tepper
, and G. A.
Voth
, “Flexible simple point-charge water model with improved liquid state properties
,” J. Chem. Phys.
124
, 024503
(2006
).59.
Y.
Wu
, H.
Chen
, F.
Wang
, F.
Paesani
, and G. A.
Voth
, “An improved multistate empirical valence bond model for aqueous proton solvation and transport
,” J. Phys. Chem. B
112
, 467
(2008
).60.
J.
Wang
, R. M.
Wolf
, J. W.
Caldwell
, P. A.
Kollman
, and D. A.
Case
, “Development and testing of a general amber force field
,” J. Comput. Chem.
25
, 1157
(2004
).61.
A. S.
Paluch
, S.
Parameswaran
, S.
Liu
, A.
Kolavennu
, and D. L.
Mobley
, “Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation
,” J. Chem. Phys.
142
, 044508
(2015
).62.
H. J. C.
Berendsen
, J. R.
Grigera
, and T. P.
Straatsma
, “The missing term in effective pair potentials
,” J. Phys. Chem.
91
, 6269
(1987
).63.
J. E.
Lennard-Jones
, “On the determination of molecular fields
,” Proc. R. Soc. A
106
, 463
(1924
).64.
R. A.
Buckingham
, “The classical equation of state of gaseous helium, neon and argon
,” Proc. R. Soc. A
168
, 264
(1938
).65.
D.
Berthelot
, “Sur le mélange des gaz
,” Comput. Rend. Acad. Sci. Paris
126
, 1703
(1898
).66.
H. A.
Lorentz
, Ann. Phys.
248
, 127
(1881
).67.
M. P.
Allen
and D. J.
Tildesley
, Computer Simulation of Liquids
(Oxford University Press
, 1987
).68.
W.
Shinoda
, M.
Shiga
, and M.
Mikami
, “Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,” Phys. Rev. B
69
, 134103
(2004
).69.
G. J.
Martyna
, D. J.
Tobias
, and M. L.
Klein
, “Constant pressure molecular dynamics algorithms
,” J. Chem. Phys.
101
, 4177
(1994
).70.
M.
Parrinello
and A.
Rahman
, “Polymorphic transitions in single crystals: A new molecular dynamics method
,” J. Appl. Phys.
52
, 7182
(1981
).71.
L.
Verlet
, “Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,” Phys. Rev.
159
, 98
(1967
).72.
W. G.
Hoover
, “Canonical Dynamics: Equilibrium phase-space distributions
,” Phys. Rev. A
31
, 1695
(1985
).73.
W. G.
Hoover
, “Constant-pressure equations of motion
,” Phys. Rev. A
34
, 2499
(1986
).74.
T.
Schneider
and E.
Stoll
, “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions
,” Phys. Rev. B
17
, 1302
(1978
).75.
P. P.
Ewald
, “Die Berechnung optischer und elektrostatischer Gitterpo-tentiale
,” Ann. Phys.
64
, 253
(1921
).76.
R. W.
Hockney
and J. W.
Eastwood
, Computer Simulation Using Particles
(McGraw-Hill
, New York
, 1989
).77.
S. W.
de Leeuw
, J. W.
Perram
, and E. R.
Smith
, “Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants
,” Proc. R. Soc. A
373
, 27
(1980
).78.
M.
Abramowitz
and A.
Stegun
, Handbook of Mathematical Functions
(Dover
, New York
, 1970
).79.
K. E.
Atkinson
, An Introduction to Numerical Analysis
, 2nd ed. (John Wiley & Sons
, New York
, 1989
).80.
H.
Flyvbjerg
and H. G.
Petersen
, “Error estimates on averages of correlated data
,” J. Chem. Phys.
91
, 461
(1989
).81.
J.
Hine
and P. K.
Mookerjee
, “Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions
,” J. Org. Chem.
40
, 292
(1975
).82.
R. D.
Wauchope
and R.
Haque
, “Aqueous solubility of polynuclear aromatic hydrocarbons
,” Can. J. Chem.
50
, 133
(1972
).83.
W.
Shiu
and K.
Ma
, “Temperature dependence of physical–chemical properties of selected chemicals of environmental interest. I. Mononuclear and polynuclear aromatic hydrocarbons
,” J. Phys. Chem. Ref. Data
29
, 41
(2000
).84.
A.
Ben-Naim
and Y.
Marcus
, “Solvation thermodynamics of nonionic solutes
,” J. Chem. Phys.
81
, 2016
(1984
).85.
J. Z.
Vilseck
, J.
Tirado-Rives
, and W. L.
Jorgensen
, “Determination of partial molar volumes from free energy perturbation theory
,” Phys. Chem. Chem. Phys.
17
, 8407
(2015
).86.
S.
Sawamura
, “Pressure dependence of the solubilities of anthracene and phenanthrene in water at 25 °C
,” J. Solution Chem.
29
, 369
(2000
).87.
F. P. A.
Fabbiani
, D. R.
Allan
, S.
Parsons
, and C. R.
Pulham
, “Exploration of the high-pressure behaviour of polycyclic aromatic hydrocarbons: Naphthalene, phenanthrene and pyrene
,” Acta Crystallogr., Sect. B: Struct. Sci.
62
, 826
(2006
).88.
W.
Q- Huang
, J.
Zhang
, A.
Berlie
, Z.-X.
Qin
, X.-M.
Zhao
, J.-B.
Zhang
, L.-Y.
Tang
, J.
Liu
, C.
Zhang
, G.-H.
Zhong
, and H.-Q.
Lin
, “Structural and vibrational properties of phenanthrene under pressure
,” J. Chem. Phys.
139
, 104302
(2013
).89.
I. S.
Joung
and T. E.
Cheatham
, III, “Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,” J. Phys. Chem. B
112
, 9020
(2008
).90.
G.
Hummer
, L. R.
Pratt
, and A. E.
García
, “Free energy of ionic hydration
,” J. Phys. Chem.
100
, 1206
(1996
).91.
F.
Figueirido
, G. S.
Del Buono
, and R. M.
Levy
, “On finite-size corrections to the free energy of ionic hydration
,” J. Phys. Chem. B
101
, 5622
(1997
).92.
G.
Hummer
, L. R.
Pratt
, and A. E.
García
, “Ion sizes and finite-size corrections for ionic-solvation free energies
,” J. Chem. Phys.
107
, 9275
(1997
).93.
G.
Hummer
, L. R.
Pratt
, and A. E.
Garcia
, “Molecular theories and simulation of ions and polar molecules in water
,” J. Phys. Chem. A
102
, 7885
(1998
).94.
F.
David
, V.
Vokhmin
, and G. J.
Ionova
, “Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions
,” J. Mol. Liq.
90
, 45
(2001
).95.
Y.
Marcus
, “A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes
,” Biophys. Chem.
51
, 111
(1994
).96.
Y.
Marcus
, “The standard partial molar volumes of ions in solution. Part 4. Ionic volumes in water at 0–100 °C
,” J. Phys. Chem. B
113
, 10285
(2009
).97.
P.
Drude
and W. Z.
Nernst
, Z. Phys. Chem.
15
, 79
(1894
).98.
99.
K. N.
Han
, “Effect of temperature and pressure on equilibrium constant involving metal ions
,” Met. Mater.
4
, 1097
(1998
).100.
G.
Raabe
and R. J.
Sadus
, “Molecular dynamics simulation of the dielectric constant of water: The effect of bond flexibility
,” J. Chem. Phys.
134
, 234501
(2011
).101.
H.
Sitepu
, B. H.
O’Connor
, and D.
Li
, “Comparative evaluation of the march and generalized spherical harmonic preferred orientation models using x-ray diffraction data for molybdite and calcite powders
,” J. Appl. Crystallogr.
38
, 158
(2005
).102.
J.
Zhang
and R.
Reeder
, “Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations
,” Am. Mineral.
84
, 861
(1999
).103.
S. A.
Markgraf
and R. J.
Reeder
, “High-temperature structure refinements of calcite and magnesite
,” Am. Mineral.
70
, 590
(1985
).104.
J.
Kendall
, “XCVI. The solubility of calcium carbonate in water
,” Philos. Mag.
23
, 958
(1912
).105.
A.
De Visscher
and J.
Vanderdeelen
, “IUPAC-NIST solubility data series. 95. Alkaline earth carbonates in aqueous systems. Part 2. Ca
,” J. Phys. Chem. Ref. Data
41
, 023105
(2012
).106.
L. N.
Plummer
and E.
Busenberg
, “The solubilities of calcite, aragonite, and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O
,” Geochim. Cosmochim. Acta
46
, 1011
(1982
).107.
A.
Mucci
, “The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure
,” Am. J. Sci.
283
, 780
(1983
).108.
B. B.
Owen
and S. R.
Brinkley
, “Calculation of the effect of pressure upon ionic equilibria in pure water and in salt solutions
,” Chem. Rev.
29
, 461
(1941
).109.
F. J.
Millero
, “The effect of pressure on the solubility of minerals in water and seawater
,” Geochim. Cosmochim. Acta
46
, 11
(1982
).110.
G.
Wolf
, J.
Lerchner
, H.
Schmidt
, H.
Gamsjäger
, E.
Königsberger
, and P.
Schmidt
, “Thermodynamics of CaCO3 phase transitions
,” J. Therm. Anal.
46
, 353
(1996
).111.
H.
Bothe
and H. K.
Cammenga
, “Phase transitions and thermodynamic properties of anhydrous caffeine
,” J. Therm. Anal.
16
, 267
(1979
).112.
C. W.
Lehmann
and F.
Stowasser
, “The crystal structure of anhydrous b-caffeine as determined from x-ray powder-diffraction data
,” Chem. - Eur. J.
13
, 2908
(2007
).113.
M. T.
Geballe
, A. G.
Skillman
, A.
Nicholls
, J. P.
Guthrie
, and P. J.
Taylor
, “The SAMPL2 blind prediction Challenge: Introduction and overview
,” J. Comput.-Aided Mol. Des.
24
, 259
(2010
).114.
J. P. M.
Jämbeck
, F.
Mocci
, A. P.
Lyubartsev
, and A.
Laaksonen
, “Partial atomic charges and their impact on the free energy of solvation
,” J. Comput. Chem.
34
, 187
(2013
).115.
C. W.
Lehmann
and F.
Stowasser
, “The crystal structure of anhydrous β-caffeine as determined from x-ray powder- diffraction data
,” Chem. - Eur. J.
13
, 2908
(2007
).116.
T. H.
Lilley
, H.
Linsdell
, and A.
Maestre
, “Association of caffeine in water and in aqueous solutions of sucrose
,” J. Chem. Soc., Faraday Trans.
88
, 2865
(1992
).117.
M.
Falk
, M.
Gil
, and N.
Iza
, “Self-association of caffeine in aqueous solution: An FT-IR study
,” Can. J. Chem.
68
, 1293
(1990
).118.
R. M.
Noyes
, “Thermodynamics of ion hydration as a measure of effective dielectric properties of water
,” J. Am. Chem. Soc.
84
, 513
(1962
).119.
M. D.
Tissandier
, K. A.
Cowen
, W. Y.
Feng
, E.
Gundlach
, M. H.
Cohen
, A. D.
Earhart
, and J. V.
Coe
, “The Proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data
,” J. Phys. Chem. A
102
, 7787
(1998
).120.
Y. H.
Jang
, X. Y.
Chang
, M.
Blanco
, S.
Hwang
, Y.
Tang
, P.
Shuler
, and W. A.
Goddard
, III, “The MSXX force field for the barium sulfate-water interface
,” J. Phys. Chem. B
106
, 9951
(2002
).121.
A. G.
Stack
and J. R.
Rustad
, “Structure and dynamics of water on aqueous barium ion and the {001} barite surface
,” J. Phys. Chem. C
111
, 016387
(2007
).122.
A. G.
Stack
, “Molecular dynamics simulations of solvation and kink site formation at the {001} barite-water interface
,” J. Phys. Chem. C
113
, 2104
(2009
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.