The solubility of a crystalline material can be estimated from the absolute free energy of the solid and the excess solvation free energy. In the earlier work, we presented a general-purpose molecular-dynamics-based methodology enabling solubility predictions of crystalline compounds, yielding accurate estimates of the aqueous solubilities of naphthalene at various pressures and temperatures. In the present work, we investigate a number of prototypical complex materials, including phenanthrene, calcite, and aragonite over a range of temperatures and pressures. Our results provide stronger evidence for the power of the methodology for universal solubility predictions.

1.
G. L.
Amidon
,
H.
Lennernäs
,
V. P.
Shah
, and
J. R.
Crison
, “
A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability
,”
Pharm. Res.
12
,
413
(
1995
).
2.
W. L.
Jorgensen
and
E. M.
Duffy
, “
Prediction of drug solubility from structure
,”
Adv. Drug Delivery Rev.
54
,
355
366
(
2002
).
3.
W. L.
Jorgensen
and
E. M.
Duffy
, “
Prediction of drug solubility from Monte Carlo simulations
,”
Bioorg. Med. Chem. Lett.
10
,
1155
(
2000
).
4.
S. J.
Park
and
G. A.
Mansoori
, “
Aggregation and deposition of heavy organics in petroleum crudes
,”
Energy Sources
10
,
109
(
1988
).
5.
K.
Raju
and
G.
Atkinson
, “
Thermodynamics of “scale” mineral solubitities. 1. BaSO4(s) in H2O and aqueous NaCl
,”
J. Chem. Eng. Data
33
,
490
(
1988
).
6.
K. U. G.
Raju
and
G.
Atkinson
, “
Thermodynamics of “scale” mineral solubitities. 3. Calcium sulfate in aqueous NaCl
,”
J. Chem. Eng. Data
35
,
361
(
1990
).
7.
T.
Chen
,
A.
Neville
, and
M.
Yuan
, “
Calcium carbonate scale formation—assessing the initial stages of precipitation and deposition
,”
J. Pet. Sci. Eng.
46
,
185
194
(
2005
).
8.
J. R.
Espinosa
,
J. M.
Young
,
H.
Jiang
,
D.
Gupta
,
C.
Vega
,
E.
Sanz
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
, “
On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures
,”
J. Chem. Phys.
145
,
154111
(
2016
).
9.
J.
Kolafa
, “
Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field
,”
J. Chem. Phys.
145
,
204509
(
2016
).
10.
M.
Lísal
,
W. R.
Smith
, and
J.
Kolafa
, “
Molecular simulations of aqueous electrolyte solubility: 1. The expanded–ensemble osmotic molecular dynamics method for the solution phase
,”
J. Phys. Chem. B
109
,
12956
(
2005
).
11.
F.
Moučka
,
M.
Lísal
, and
W. R.
Smith
, “
Molecular simulation of aqueous electrolyte solubility. 3. Alkali–halide salts and their mixtures in water and in hydrochloric acid
,”
J. Phys. Chem. B
116
,
5468
(
2012
).
12.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
, “
Chemical potentials, activity coefficients, and solubility in aqueous NaCl Solutions: Prediction by polarizable force fields
,”
J. Chem. Theory Comput.
11
,
1756
(
2015
).
13.
I.
Nezbeda
,
F.
Moučka
, and
W. R.
Smith
, “
Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility
,”
Mol. Phys.
114
,
1665
(
2016
).
14.
M.
Ferrario
,
G.
Ciccotti
,
E.
Spohr
,
T.
Cartailler
, and
P.
Turq
, “
Solubility of KF in water by molecular dynamics using the Kirkwood integration method
,”
J. Chem. Phys.
117
,
4947
(
2002
).
15.
H. M.
Manzanilla-Granados
,
H.
Saint-Martín
,
R.
Fuentes-Azcatl
, and
J.
Alejandre
, “
Direct coexistence methods to determine the solubility of salts in water from numerical simulations. Test case NaCl
,”
J. Phys. Chem. B
119
,
8389
(
2015
).
16.
J. L.
Aragones
,
E.
Sanz
, and
C.
Vega
, “
Solubility of NaCl in water by molecular simulation revisited
,”
J. Chem. Phys.
136
,
244508
(
2012
).
17.
A. L.
Benavides
,
J. L.
Aragones
, and
C.
Vega
, “
Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
,”
J. Chem. Phys.
144
,
124504
(
2016
).
18.
A. S.
Paluch
,
S.
Jayaraman
,
J. K.
Shah
, and
E. J.
Maginn
, “
A method for computing the solubility limit of solids: Application to sodium chloride in water and alcohols
,”
J. Chem. Phys.
133
,
124504
(
2010
).
19.
Z.
Mester
and
A. Z.
Panagiotopoulos
, “
Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations
,”
J. Chem. Phys.
142
,
044507
(
2015
).
20.
Z.
Mester
and
A. Z.
Panagiotopoulos
, “
Temperature–dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations
,”
J. Chem. Phys.
143
,
044505
(
2015
).
21.
F.
Moucka
,
M.
Lisal
,
J.
Skvor
,
J.
Jirsak
,
I.
Nezbeda
, and
W. R.
Smith
, “
Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl
,”
J. Phys. Chem. B
115
,
7849
(
2011
).
22.
M. J.
Schnieders
,
J.
Baltrusaitis
,
Y.
Shi
,
G.
Chattree
,
L.
Zheng
,
W.
Yang
, and
P.
Ren
, “
The structure, thermodynamics, and solubility of organic crystals from simulation with a polarizable force field
,”
J. Chem. Theory Comput.
8
,
1721
(
2012
).
23.
D. S.
Palmer
,
J. L.
McDonagh
,
J. B. O.
Mitchell
,
T.
Van Mourik
, and
M. V.
Fedorov
, “
First-principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules
,”
J. Chem. Theory Comput.
8
,
3322
(
2012
).
24.
J. C.
Dearden
, “
In silico prediction of aqueous solubility
,”
Expert Opin. Drug Discovery
1
,
31
(
2006
).
25.
A. S.
Paluch
and
E. J.
Maginn
, “
Predicting the solubility of solid phenanthrene: A combined molecular simulation and group contribution approach
,”
AIChE J.
59
,
2647
(
2013
).
26.
M. J.
Lazzaroni
,
D.
Bush
,
C. A.
Eckert
,
T. C.
Frank
,
S.
Gupta
, and
J. D.
Olson
, “
Revision of MOSCED parameters and extension to solid solubility calculations
,”
Ind. Eng. Chem. Res.
44
,
4075
(
2005
).
27.
R. T.
Ley
,
G. B.
Fuerst
,
B. N.
Redeker
, and
A. S.
Paluch
, “
Developing a predictive form of MOSCED for nonelectrolyte solids using molecular simulation: Application to acetanilide, acetaminophen, and phenacetin
,”
Ind. Eng. Chem. Res.
55
,
5415
(
2016
).
28.
S.
Cabani
,
G.
Mollica
, and
V.
Lepori
, “
Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution
,”
J. Solution Chem.
10
,
563
(
1981
).
29.
L.
Li
,
T.
Totton
, and
D.
Frenkel
, “
Computational methodology for solubility prediction: Application to simple aromatic crystals
,”
J. Chem. Phys.
146
,
214110
(
2017
).
30.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
31.
R. W.
Zwanzig
, “
High-Temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
,
1420
(
1954
).
32.
R. W.
Zwanzig
, “
High-Temperature equation of state by a perturbation method. II. Polar gases
,”
J. Chem. Phys.
23
,
1915
(
1955
).
33.
D. A.
Kofke
and
P. T.
Cummings
, “
Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation
,”
Mol. Phys.
92
,
973
(
1997
).
34.
D.
Frenkel
and
B.
Smith
,
Understanding Molecular Simulations
, 2nd ed. (
Academic, London
,
2002
).
35.
P.
Kollman
, “
Free energy calculations: Applications to chemical and biochemical phenomena
,”
Chem. Rev.
93
,
2395
(
1993
).
36.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
(
1935
).
37.
W. L.
Jorgensen
,
J. F.
Blake
, and
J. K.
Buckner
, “
Free energy of TIP4P water and the free energies of hydration of CH4 and Cl from statistical perturbation theory
,”
Chem. Phys.
129
,
193
(
1989
).
38.
D.
Shivakumar
,
J.
Williams
,
Y. J.
Wu
,
W.
Damm
,
J.
Shelley
, and
W.
Sherman
, “
Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field
,”
J. Chem. Theory Comput.
6
,
1509
(
2010
).
39.
D.
Frenkel
and
A. J.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
,
3188
(
1984
).
40.
E. J.
Meijer
,
D.
Frenkel
,
R. A.
LeSar
, and
A. J. C.
Ladd
, “
Location of melting point at 300 K of nitrogen by Monte Carlo simulation
,”
J. Chem. Phys.
92
,
7570
(
1990
).
41.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
, “
Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins
,”
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
42.
J. L.
Aragones
,
C.
Valeriani
, and
C.
Vega
, “
Note: Free energy calculations for atomic solids through the Einstein crystal/molecule methodology using GROMACS and LAMMPS
,”
J. Chem. Phys.
137
,
146101
(
2012
).
43.
J. L.
Aragones
,
E. G.
Noya
,
C.
Valeriani
, and
C.
Vega
, “
Free energy calculations for molecular solids using GROMACS
,”
J. Chem. Phys.
139
,
034104
(
2013
).
44.
K.
Ioannidou
,
M.
Kanduč
,
L.
Li
,
D.
Frenkel
,
J.
Dobnikar
, and
E. D.
Gado
, “
The crucial effect of early-stage gelation on the mechanical properties of cement hydrates
,”
Nat. Commun.
7
,
012106
(
2016
).
45.
M. S.
Sellers
,
M.
Lísal
, and
J. K.
Brennan
, “
Free–energy calculations using classical molecular simulation: Application to the determination of the melting point and chemical potential of a flexible RDX model
,”
Phys. Chem. Chem. Phys.
18
,
7841
(
2016
).
46.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper and Row
,
New York
,
1976
).
47.
W. G.
Hoover
, “
Entropy for small classical crystals
,”
J. Chem. Phys.
49
,
1981
(
1968
).
48.
J.
Polson
,
E.
Trizac
,
S.
Pronk
, and
D.
Frenkel
, “
Finite-size corrections to the free energies of crystalline solids
,”
J. Chem. Phys.
112
,
5339
(
2000
).
49.
T.
Steinbrecher
,
D. L.
Mobley
, and
D. A.
Case
, “
Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculation
,”
J. Chem. Phys.
127
,
214108
(
2007
).
50.
T.
Simonson
, “
Free energy of particle insertion
,”
Mol. Phys.
80
,
441
(
1993
).
51.
J. P. M.
Postma
,
H. J. C.
Berendsen
, and
J. R.
Haak
, “
Thermodynamics of cavity formation in water a molecular dynamics study
,”
Faraday Symp. Chem. Soc.
17
,
55
(
1982
).
52.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
(
1996
).
53.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
,
Dordrecht
,
1981
), p.
331
.
54.
P.
Raiteri
,
J. D.
Gale
,
D.
Quigley
, and
P. M.
Rodger
, “
Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: A new model for the calcite-water interface
,”
J. Phys. Chem. C
114
,
5997
(
2010
).
55.
P.
Raiteri
and
J. D.
Gale
, “
Water is the key to nonclassical nucleation of amorphous calcium carbonate
,”
J. Am. Chem. Soc.
132
,
17623
(
2010
).
56.
P.
Raiteri
,
J. D.
Gale
,
D.
Quigley
, and
D.
Gebauer
, “
Stable prenucleation mineral clusters are liquid-like ionic polymers
,”
Nat. Commun.
2
,
590
(
2011
).
57.
P.
Raiteri
,
R.
Demichelis
, and
J. D.
Gale
, “
A thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation
,”
J. Phys. Chem. C
119
,
24447
(
2015
).
58.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid state properties
,”
J. Chem. Phys.
124
,
024503
(
2006
).
59.
Y.
Wu
,
H.
Chen
,
F.
Wang
,
F.
Paesani
, and
G. A.
Voth
, “
An improved multistate empirical valence bond model for aqueous proton solvation and transport
,”
J. Phys. Chem. B
112
,
467
(
2008
).
60.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
(
2004
).
61.
A. S.
Paluch
,
S.
Parameswaran
,
S.
Liu
,
A.
Kolavennu
, and
D. L.
Mobley
, “
Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation
,”
J. Chem. Phys.
142
,
044508
(
2015
).
62.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
(
1987
).
63.
J. E.
Lennard-Jones
, “
On the determination of molecular fields
,”
Proc. R. Soc. A
106
,
463
(
1924
).
64.
R. A.
Buckingham
, “
The classical equation of state of gaseous helium, neon and argon
,”
Proc. R. Soc. A
168
,
264
(
1938
).
65.
D.
Berthelot
, “
Sur le mélange des gaz
,”
Comput. Rend. Acad. Sci. Paris
126
,
1703
(
1898
).
66.
H. A.
Lorentz
,
Ann. Phys.
248
,
127
(
1881
).
67.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1987
).
68.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
69.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
(
1994
).
70.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
71.
L.
Verlet
, “
Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
72.
W. G.
Hoover
, “
Canonical Dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
73.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
(
1986
).
74.
T.
Schneider
and
E.
Stoll
, “
Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions
,”
Phys. Rev. B
17
,
1302
(
1978
).
75.
P. P.
Ewald
, “
Die Berechnung optischer und elektrostatischer Gitterpo-tentiale
,”
Ann. Phys.
64
,
253
(
1921
).
76.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
McGraw-Hill
,
New York
,
1989
).
77.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
, “
Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants
,”
Proc. R. Soc. A
373
,
27
(
1980
).
78.
M.
Abramowitz
and
A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1970
).
79.
K. E.
Atkinson
,
An Introduction to Numerical Analysis
, 2nd ed. (
John Wiley & Sons
,
New York
,
1989
).
80.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
(
1989
).
81.
J.
Hine
and
P. K.
Mookerjee
, “
Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions
,”
J. Org. Chem.
40
,
292
(
1975
).
82.
R. D.
Wauchope
and
R.
Haque
, “
Aqueous solubility of polynuclear aromatic hydrocarbons
,”
Can. J. Chem.
50
,
133
(
1972
).
83.
W.
Shiu
and
K.
Ma
, “
Temperature dependence of physical–chemical properties of selected chemicals of environmental interest. I. Mononuclear and polynuclear aromatic hydrocarbons
,”
J. Phys. Chem. Ref. Data
29
,
41
(
2000
).
84.
A.
Ben-Naim
and
Y.
Marcus
, “
Solvation thermodynamics of nonionic solutes
,”
J. Chem. Phys.
81
,
2016
(
1984
).
85.
J. Z.
Vilseck
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Determination of partial molar volumes from free energy perturbation theory
,”
Phys. Chem. Chem. Phys.
17
,
8407
(
2015
).
86.
S.
Sawamura
, “
Pressure dependence of the solubilities of anthracene and phenanthrene in water at 25 °C
,”
J. Solution Chem.
29
,
369
(
2000
).
87.
F. P. A.
Fabbiani
,
D. R.
Allan
,
S.
Parsons
, and
C. R.
Pulham
, “
Exploration of the high-pressure behaviour of polycyclic aromatic hydrocarbons: Naphthalene, phenanthrene and pyrene
,”
Acta Crystallogr., Sect. B: Struct. Sci.
62
,
826
(
2006
).
88.
W.
Q- Huang
,
J.
Zhang
,
A.
Berlie
,
Z.-X.
Qin
,
X.-M.
Zhao
,
J.-B.
Zhang
,
L.-Y.
Tang
,
J.
Liu
,
C.
Zhang
,
G.-H.
Zhong
, and
H.-Q.
Lin
, “
Structural and vibrational properties of phenanthrene under pressure
,”
J. Chem. Phys.
139
,
104302
(
2013
).
89.
I. S.
Joung
and
T. E.
Cheatham
, III
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
(
2008
).
90.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
García
, “
Free energy of ionic hydration
,”
J. Phys. Chem.
100
,
1206
(
1996
).
91.
F.
Figueirido
,
G. S.
Del Buono
, and
R. M.
Levy
, “
On finite-size corrections to the free energy of ionic hydration
,”
J. Phys. Chem. B
101
,
5622
(
1997
).
92.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
García
, “
Ion sizes and finite-size corrections for ionic-solvation free energies
,”
J. Chem. Phys.
107
,
9275
(
1997
).
93.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcia
, “
Molecular theories and simulation of ions and polar molecules in water
,”
J. Phys. Chem. A
102
,
7885
(
1998
).
94.
F.
David
,
V.
Vokhmin
, and
G. J.
Ionova
, “
Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions
,”
J. Mol. Liq.
90
,
45
(
2001
).
95.
Y.
Marcus
, “
A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes
,”
Biophys. Chem.
51
,
111
(
1994
).
96.
Y.
Marcus
, “
The standard partial molar volumes of ions in solution. Part 4. Ionic volumes in water at 0–100 °C
,”
J. Phys. Chem. B
113
,
10285
(
2009
).
97.
P.
Drude
and
W. Z.
Nernst
,
Z. Phys. Chem.
15
,
79
(
1894
).
98.
K. N.
Han
,
Fundamentals of Aqueous Metallurgy
(
SME
,
2002
), p.
81
.
99.
K. N.
Han
, “
Effect of temperature and pressure on equilibrium constant involving metal ions
,”
Met. Mater.
4
,
1097
(
1998
).
100.
G.
Raabe
and
R. J.
Sadus
, “
Molecular dynamics simulation of the dielectric constant of water: The effect of bond flexibility
,”
J. Chem. Phys.
134
,
234501
(
2011
).
101.
H.
Sitepu
,
B. H.
O’Connor
, and
D.
Li
, “
Comparative evaluation of the march and generalized spherical harmonic preferred orientation models using x-ray diffraction data for molybdite and calcite powders
,”
J. Appl. Crystallogr.
38
,
158
(
2005
).
102.
J.
Zhang
and
R.
Reeder
, “
Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations
,”
Am. Mineral.
84
,
861
(
1999
).
103.
S. A.
Markgraf
and
R. J.
Reeder
, “
High-temperature structure refinements of calcite and magnesite
,”
Am. Mineral.
70
,
590
(
1985
).
104.
J.
Kendall
, “
XCVI. The solubility of calcium carbonate in water
,”
Philos. Mag.
23
,
958
(
1912
).
105.
A.
De Visscher
and
J.
Vanderdeelen
, “
IUPAC-NIST solubility data series. 95. Alkaline earth carbonates in aqueous systems. Part 2. Ca
,”
J. Phys. Chem. Ref. Data
41
,
023105
(
2012
).
106.
L. N.
Plummer
and
E.
Busenberg
, “
The solubilities of calcite, aragonite, and vaterite in CO2–H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O
,”
Geochim. Cosmochim. Acta
46
,
1011
(
1982
).
107.
A.
Mucci
, “
The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure
,”
Am. J. Sci.
283
,
780
(
1983
).
108.
B. B.
Owen
and
S. R.
Brinkley
, “
Calculation of the effect of pressure upon ionic equilibria in pure water and in salt solutions
,”
Chem. Rev.
29
,
461
(
1941
).
109.
F. J.
Millero
, “
The effect of pressure on the solubility of minerals in water and seawater
,”
Geochim. Cosmochim. Acta
46
,
11
(
1982
).
110.
G.
Wolf
,
J.
Lerchner
,
H.
Schmidt
,
H.
Gamsjäger
,
E.
Königsberger
, and
P.
Schmidt
, “
Thermodynamics of CaCO3 phase transitions
,”
J. Therm. Anal.
46
,
353
(
1996
).
111.
H.
Bothe
and
H. K.
Cammenga
, “
Phase transitions and thermodynamic properties of anhydrous caffeine
,”
J. Therm. Anal.
16
,
267
(
1979
).
112.
C. W.
Lehmann
and
F.
Stowasser
, “
The crystal structure of anhydrous b-caffeine as determined from x-ray powder-diffraction data
,”
Chem. - Eur. J.
13
,
2908
(
2007
).
113.
M. T.
Geballe
,
A. G.
Skillman
,
A.
Nicholls
,
J. P.
Guthrie
, and
P. J.
Taylor
, “
The SAMPL2 blind prediction Challenge: Introduction and overview
,”
J. Comput.-Aided Mol. Des.
24
,
259
(
2010
).
114.
J. P. M.
Jämbeck
,
F.
Mocci
,
A. P.
Lyubartsev
, and
A.
Laaksonen
, “
Partial atomic charges and their impact on the free energy of solvation
,”
J. Comput. Chem.
34
,
187
(
2013
).
115.
C. W.
Lehmann
and
F.
Stowasser
, “
The crystal structure of anhydrous β-caffeine as determined from x-ray powder- diffraction data
,”
Chem. - Eur. J.
13
,
2908
(
2007
).
116.
T. H.
Lilley
,
H.
Linsdell
, and
A.
Maestre
, “
Association of caffeine in water and in aqueous solutions of sucrose
,”
J. Chem. Soc., Faraday Trans.
88
,
2865
(
1992
).
117.
M.
Falk
,
M.
Gil
, and
N.
Iza
, “
Self-association of caffeine in aqueous solution: An FT-IR study
,”
Can. J. Chem.
68
,
1293
(
1990
).
118.
R. M.
Noyes
, “
Thermodynamics of ion hydration as a measure of effective dielectric properties of water
,”
J. Am. Chem. Soc.
84
,
513
(
1962
).
119.
M. D.
Tissandier
,
K. A.
Cowen
,
W. Y.
Feng
,
E.
Gundlach
,
M. H.
Cohen
,
A. D.
Earhart
, and
J. V.
Coe
, “
The Proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data
,”
J. Phys. Chem. A
102
,
7787
(
1998
).
120.
Y. H.
Jang
,
X. Y.
Chang
,
M.
Blanco
,
S.
Hwang
,
Y.
Tang
,
P.
Shuler
, and
W. A.
Goddard
, III
, “
The MSXX force field for the barium sulfate-water interface
,”
J. Phys. Chem. B
106
,
9951
(
2002
).
121.
A. G.
Stack
and
J. R.
Rustad
, “
Structure and dynamics of water on aqueous barium ion and the {001} barite surface
,”
J. Phys. Chem. C
111
,
016387
(
2007
).
122.
A. G.
Stack
, “
Molecular dynamics simulations of solvation and kink site formation at the {001} barite-water interface
,”
J. Phys. Chem. C
113
,
2104
(
2009
).

Supplementary Material

You do not currently have access to this content.