Biochemical oscillations are ubiquitous in living organisms. In an autonomous system, not influenced by an external signal, they can only occur out of equilibrium. We show that they emerge through a generic nonequilibrium phase transition, with a characteristic qualitative behavior at criticality. The control parameter is the thermodynamic force which must be above a certain threshold for the onset of biochemical oscillations. This critical behavior is characterized by the thermodynamic flux associated with the thermodynamic force, its diffusion coefficient, and the stationary distribution of the oscillating chemical species. We discuss metrics for the precision of biochemical oscillations by comparing two observables, the Fano factor associated with the thermodynamic flux and the number of coherent oscillations. Since the Fano factor can be small even when there are no biochemical oscillations, we argue that the number of coherent oscillations is more appropriate to quantify the precision of biochemical oscillations. Our results are obtained with three thermodynamically consistent versions of known models: the Brusselator, the activator-inhibitor model, and a model for KaiC oscillations.

1.
B.
Novák
and
J. J.
Tyson
,
Nat. Rev. Mol. Cell Biol.
9
,
981
(
2008
).
2.
A.
Goldbeter
and
M. J.
Berridge
,
Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour
(
Cambridge University Press
,
1996
).
3.
M.
Nakajima
,
K.
Imai
,
H.
Ito
,
T.
Nishiwaki
,
Y.
Murayama
,
H.
Iwasaki
,
T.
Oyama
, and
T.
Kondo
,
Science
308
,
414
(
2005
).
4.
J.
Ferrell
,
T.-C.
Tsai
, and
Q.
Yang
,
Cell
144
,
874
(
2011
).
5.
Y.
Cao
,
H.
Wang
,
Q.
Ouyang
, and
Y.
Tu
,
Nat. Phys.
11
,
772
(
2015
).
6.
P.
Gaspard
,
J. Chem. Phys.
120
,
8898
(
2004
).
7.
T. J.
Xiao
,
Z.
Hou
, and
H.
Xin
,
J. Chem. Phys.
129
,
114506
(
2008
).
8.
M.
Vellela
and
H.
Qian
,
J. R. Soc., Interface
6
,
925
(
2009
).
9.
T.
Rao
,
T.
Xiao
, and
Z.
Hou
,
J. Chem. Phys.
134
,
214112
(
2011
).
10.
C.
Bianca
and
A.
Lemarchand
,
J. Chem. Phys.
141
,
144102
(
2014
).
11.
G.
Nicolis
and
M.
Malek-Mansour
,
Suppl. Prog. Theor. Phys.
64
,
249
(
1978
).
12.
R.
Schranner
,
S.
Grossmann
, and
P. H.
Richter
,
Z. Phys. B: Condens. Matter
35
,
363
(
1979
).
13.
F.
Baras
,
M. M.
Mansour
, and
C.
Van den Broeck
,
J. Stat. Phys.
28
,
577
(
1982
).
14.
D.
Walgraef
,
G.
Dewel
, and
P.
Borckmans
,
J. Chem. Phys.
78
,
3043
(
1983
).
15.
G.
Nicolis
,
Rep. Prog. Phys.
49
,
873
(
1986
).
16.
A. C.
Barato
and
U.
Seifert
,
Phys. Rev. E
95
,
062409
(
2017
).
17.
H.
Wierenga
,
P. R.
ten Wolde
, and
N. B.
Becker
,
Phys. Rev. E
97
,
042404
(
2018
).
19.
G.
Lan
,
P.
Sartori
,
S.
Neumann
,
V.
Sourjik
, and
Y.
Tu
,
Nat. Phys.
8
,
422
(
2012
).
20.
P.
Mehta
and
D. J.
Schwab
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17978
(
2012
).
21.
C. C.
Govern
and
P. R.
ten Wolde
,
Phys. Rev. Lett.
113
,
258102
(
2014
).
22.
D.
Hartich
,
A. C.
Barato
, and
U.
Seifert
,
New J. Phys.
17
,
055026
(
2015
).
23.
T. E.
Ouldridge
,
C. C.
Govern
, and
P. R.
ten Wolde
,
Phys. Rev. X
7
,
021004
(
2017
).
24.
M.
Schnitzer
and
S.
Block
,
Cold Spring Harbor Symp. Quant. Biol.
60
,
793
(
1995
).
25.
Y. R.
Chemla
,
J. R.
Moffitt
, and
C.
Bustamante
,
J. Phys. Chem. B
112
,
6025
(
2008
).
26.
J. R.
Moffitt
and
C.
Bustamante
,
FEBS J.
281
,
498
(
2014
).
27.
A. C.
Barato
and
U.
Seifert
,
J. Phys. Chem. B
119
,
6555
(
2015
).
28.
A. C.
Barato
and
U.
Seifert
,
Phys. Rev. Lett.
115
,
188103
(
2015
).
29.
A. C.
Barato
and
U.
Seifert
,
Phys. Rev. X
6
,
041053
(
2016
).
30.
A. C.
Barato
and
U.
Seifert
,
Phys. Rev. Lett.
114
,
158101
(
2015
).
31.
P.
Pietzonka
,
A. C.
Barato
, and
U.
Seifert
,
Phys. Rev. E
93
,
052145
(
2016
).
32.
T. R.
Gingrich
,
J. M.
Horowitz
,
N.
Perunov
, and
J. L.
England
,
Phys. Rev. Lett.
116
,
120601
(
2016
).
33.
H.
Qian
and
M.
Qian
,
Phys. Rev. Lett.
84
,
2271
(
2000
).
34.
P.
Gaspard
J. Chem. Phys.
117
,
8905
(
2002
).
35.
Z.
Hou
,
T. J.
Xiao
, and
H.
Xin
,
ChemPhysChem
7
,
1520
(
2006
).
36.
T.
Xiao
,
J.
Ma
,
Z.
Hou
, and
H.
Xin
,
New J. Phys.
9
,
403
(
2007
).
37.
L. G.
Morelli
and
F.
Jülicher
,
Phys. Rev. Lett.
98
,
228101
(
2007
).
38.
D. J.
Jörg
,
L. G.
Morelli
, and
F.
Jülicher
,
Phys. Rev. E
97
,
032409
(
2018
).
39.
J.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley & Sons
,
New York
,
1977
).
40.
J. S.
van Zon
,
D. K.
Lubensky
,
P. R. H.
Altena
, and
P. R.
ten Wolde
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
7420
(
2007
).
41.
G.
Dong
and
S. S.
Golden
,
Curr. Opin. Microbiol.
11
,
541
(
2008
).
42.
R.
Lefever
,
G.
Nicolis
, and
P.
Borckmans
,
J. Chem. Soc., Faraday Trans. 1
84
,
1013
(
1988
).
43.
H.
Qian
,
S.
Saffarian
, and
E. L.
Elson
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
10376
(
2002
).
44.
D.
Andrieux
and
P.
Gaspard
,
J. Chem. Phys.
128
,
154506
(
2008
).
45.
46.
D. T.
Gillespie
,
J. Chem. Phys.
81
,
2340
(
1977
).
47.
J.
Paijmans
,
D. K.
Lubensky
, and
P. R.
ten Wolde
,
Biophys. J.
113
,
157
(
2017
).
48.
M.
Esposito
,
Phys. Rev. E
85
,
041125
(
2012
).
49.
A. J.
McKane
,
J. D.
Nagy
,
T. J.
Newman
, and
M. O.
Stefanini
,
J. Stat. Phys.
128
,
165
(
2007
).
50.
L.
Crochik
and
T.
Tomé
,
Phys. Rev. E
72
,
057103
(
2005
).
51.
B.
Andrae
,
J.
Cremer
,
T.
Reichenbach
, and
E.
Frey
,
Phys. Rev. Lett.
104
,
218102
(
2010
).
52.
M. J.
de Oliveira
,
J. Stat. Mech.: Theory Exp.
2011
,
P12012
.
53.
T.
Tomé
and
M. J.
de Oliveira
,
Phys. Rev. Lett.
108
,
020601
(
2012
).
54.
A. C.
Barato
and
H.
Hinrichsen
,
J. Phys. A: Math. Theor.
45
,
115005
(
2012
).
55.
Y.
Zhang
and
A. C.
Barato
,
J. Stat. Mech.
2016
,
113207
.
56.
G.
Falasco
,
R.
Rao
, and
M.
Esposito
, e-print arXiv:1803.05378 [cond-mat.stat-mech] (
2018
).
You do not currently have access to this content.