Viscoelastic response in terms of the complex shear modulus G*(ω) of the linear polymers poly(ethylene-alt-propylene), poly(isoprene), and poly(butadiene) is studied for molar masses (M) from 3k up to 1000k and over a wide temperature range starting from the glass transition temperature Tg (174 K–373 K). Master curves G′(ωτα) and G″(ωτα) are constructed for the polymer-specific relaxation. Segmental relaxation occurring close to Tg is independently addressed by single spectra. Altogether, viscoelastic response is effectively studied over 14 decades in frequency. The structural relaxation time τα used for scaling is taken from dielectric spectra. We suggest a derivative method for identifying the different power-law regimes and their exponents along G″(ωτα) ∝ ωε. The exponent ε″ = ε″(ωτα) ≡ d ln G″(ωτα)/d ln(ωτα) reveals more details compared to conventional analyses and displays high similarity among the polymers. Within a simple scaling model, the original tube-reptation model is extended to include contour length fluctuations (CLFs). The model reproduces all signatures of the quantitative theory by Likhtman and McLeish. The characteristic times and power-law exponents are rediscovered in ε″(ωτα). The high-frequency flank of the terminal relaxation closely follows the prediction for CLF (ε″ = −0.25), i.e., G″(ω) ∝ ω0.21±0.02. At lower frequencies, a second regime with lower exponent ε″ is observed signaling the crossover to coherent reptation. Application of the full Likhtman-McLeish calculation provides a quantitative interpolation of ε″(ωτα) at frequencies below those of the Rouse regime. The derivative method also allows identifying the entanglement time τe. However, as the exponent in the Rouse regime (ωτe > 1) varies along εeRouse = 0.66 ± 0.04 (off the Rouse prediction εRouse = 0.5) and that at ωτe < 1 is similar, only a weak manifestation of the crossover at τe is found at highest M. Yet, calculating τe/τα= (M/Mo)2, we find good agreement among the polymers when discussing ε″(ωτe). The terminal relaxation time τt is directly read off from ε″(ωτα). Plotting τt/τe as a function of Z = M/Me, we find universal behavior as predicted by the TR model. The M dependence crosses over from an exponent significantly larger than 3.0 at intermediate M to an exponent approaching 3.0 at highest M in agreement with previous reports. The frequency of the minimum in G″(ωτα) scales as τminM1.0±0.1. An M-independent frequency marks the crossover to glassy relaxation at the highest frequencies. Independent of the amplitude of G″(ω), which may be related to sample-to-sample differences, the derivative method is a versatile tool to provide a detailed phenomenological analysis of the viscoelastic response of complex liquids.

1.
P. G.
deGennes
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys.
55
,
572
(
1971
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford Scientific Publication
,
1986
).
3.
A. E.
Likhtman
and
T. C. B.
McLeish
, “
Quantitative theory for linear dynamics of linear entangled polymers
,”
Macromolecules
35
,
6332
(
2002
).
4.
M.
Abdel-Goad
,
W.
Pyckhout-Hintzen
,
S.
Kahle
,
J.
Allgaier
,
D.
Richter
, and
L. J.
Fetters
, “
Rheological proterties of 1,4-polybutadienen over a large molecular weight range
,”
Macromolecules
37
,
8135
(
2004
).
5.
D.
Auhl
,
J.
Ramirez
,
A. E.
Likhtman
,
P.
Chambon
, and
Ch.
Fernyhough
, “
Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights
,”
J. Rheol.
52
,
801
(
2008
).
6.
A.
Wischnewski
,
M.
Monkenbusch
,
L.
Willner
,
D.
Richter
, and
G.
Kali
, “
Direct observation of the transition from free to constrained single-segment motion in entangled polymer melts
,”
Phys. Rev. Lett.
90
,
058302
(
2003
).
7.
D.
Richter
,
M.
Monkenbusch
,
A.
Arbe
, and
J.
Colmenero
, “
Neutron spin echo in polymer systems
,”
Adv. Polym. Sci.
174
,
1
(
2005
).
8.
M.
Kehr
,
N.
Fatkullin
, and
R.
Kimmich
, “
Molecular diffusion on a time scale between nano- and milliseconds probed by field-cycling NMR relaxometry of intermolecular dipolar interaction: Applications to polymer melts
,”
J. Chem. Phys.
126
,
094903
(
2007
).
9.
A.
Herrmann
,
B.
Kresse
,
M.
Wohlfart
,
I.
Bauer
,
A. F.
Privalov
,
D.
Kruk
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
, “
Mean square displacement and reorientational correlation function in entangled polymer melts revealed by field cycling 1H and 2H NMR relaxometry
,”
Macromolecules
45
,
6516
(
2012
).
10.
B.
Kresse
,
M.
Hofmann
,
A. F.
Privalov
,
F.
Fujara
,
N.
Fatkullin
, and
E. A.
Rössler
, “
All polymer diffusion regimes covered by combining field-cycling and field-gradient 1H NMR
,”
Macromolecules
48
,
4491
(
2015
).
11.
M.
Hofmann
,
B.
Kresse
,
A. F.
Privalov
,
L.
Heymann
,
L.
Willner
,
N.
Aksel
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
, “
Segmental mean square displacement: Field-cycling 1H relaxometry vs. neutron scattering
,”
Macromolecules
49
,
7945
(
2016
).
12.
M.
Doi
, “
Explanation for the 3,4-power law for viscosity of polymeric liquids on the basis of the tube model
,”
J. Polym. Sci.: Phys. Ed.
21
,
667
(
1983
).
13.
M.
Rubinstein
and
R. H.
Colby
, “
Self-consistent theory of polydisperse entangled polymers: Linear viscoelasticity of binary blends
,”
J. Chem. Phys.
89
,
5291
(
1988
).
14.
J. D.
Cloizeaux
, “
Relaxation and viscosity anomaly of melts made of long entangled polymers: Time-dependent reptation
,”
Macromolecules
23
,
4678
(
1990
).
15.
C.-Y.
Liu
,
R.
Keunings
, and
C.
Bailly
, “
Direct rheological evidence of monomer density reequilibration for entangled polymer melts
,”
Macromolecules
40
,
2946
(
2007
).
16.
S. J.
Park
,
P. S.
Desai
,
X.
Chen
, and
R. G.
Larson
, “
Universal relaxation behavior of entangled 1,4-polybutadiene melts in the transition frequency region
;”
Macromolecules
48
,
4122
(
2015
).
17.
L.
Szanto
,
R.
Vogt
,
J.
Meier
,
D.
Auhl
,
E.
Van Ruymbeke
, and
C.
Friedrich
, “
Entanglement relaxation time of polyethylene melts from high-frequency rheometry in the mega-hertz range
,”
J. Rheol.
61
,
1023
(
2017
).
18.
M.
Hofmann
,
N.
Fatkullin
, and
E. A.
Rössler
, “
Inconsistencies in determining the entanglement time of poly(butadiene) from rheology and comparison to results from field-cycling NMR
,”
Macromolecules
50
,
1755
(
2017
).
19.
D.
Ferry
,
Viscoelastic Properties of Polymers
(
John Wiley & Sons
,
New York
1980
).
20.
R. H.
Colby
,
L. J.
Fetters
, and
W. W.
Graessley
, “
Melt viscosity-molecular weight relationship for linear polymers
,”
Macromolecules
20
,
2226
(
1987
).
21.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford, UK
,
2003
).
22.
W. W.
Graessley
,
Polymeric Liquids and Networks: Dynamics and Rheology
, Polymeric Liquids and Networks: Structure and Properties (
Taylor and Francis
,
New York
,
2008
).
23.
M.
Hofmann
,
B.
Kresse
,
L.
Heymann
,
A. F.
Privalov
,
N.
Fatkullin
,
N.
Aksel
,
F.
Fujara
, and
E. A.
Rössler
, “
Dynamics of a paradigmatic linear polymer: A proton field-cycling NMR relaxometry study on poly(ethylene-propylene)
,”
Macromolecules
49
,
8622
(
2016
).
24.
S.
Kariyo
,
A.
Brodin
,
C.
Gainaru
,
A.
Herrmann
,
H.
Schick
,
V. N.
Novikov
, and
E. A.
Rössler
, “
From simple liquid to polymer melt. Glassy and polymer dynamics studied by field cycling NMR relaxometry: Low and high molecular weight limit
,”
Macromolecules
41
,
5313
(
2009
).
25.
A. A.
Elfadl
,
A.
Herrmann
,
V. N.
Novikov
, and
E. A.
Rössler
, “
From Rouse to entanglement dynamics—A study of polyisoprene by dielectric spectroscopy
,”
Macromolecules
43
,
3340
(
2010
).
26.
B.
Schmidtke
,
M.
Hofmann
,
A.
Lichtinger
, and
E. A.
Rössler
, “
Temperature dependence of the segmental relaxation time of polymers revisited
,”
Macromolecules
48
,
3005
(
2015
).
27.
T.
Körber
,
F.
Mohamed
,
M.
Hofmann
,
A.
Lichtinger
,
L.
Willner
, and
E. A.
Rössler
, “
On the nature of secondary relaxations: The case of poly(ethylene-alt-propylene) studied by dielectric and deuteron NMR spectroscopy
,”
Macromolecules
50
,
1554
(
2017
).
28.
C. B.
Gell
,
W. W.
Graessley
, and
L. J.
Fetters
, “
Viscoelasticity and self-diffusion in melts of entangled linear polymers
,”
J. Polym. Sci. Part B: Polym. Phys.
35
,
1933
(
1997
).
29.
K.
Nusser
,
G. J.
Schneider
, and
D.
Richter
, “
Rheology and anomalous flow properties of poly(ethylene-alt-propylene)–silica nanocomposites
,”
Macromolecules
46
,
6263
(
2013
).
30.
T.
Glomann
,
G.
Schneider
,
R.
Bras
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
R.
Zorn
,
J.
Allgaier
, and
D.
Richter
, “
Unified description of the viscosity and the dielectric global chain motion in terms of the tube theory
,”
Macromolecules
44
,
7430
(
2011
).
31.
D. J.
Plazek
and
V. M.
O’Rourke
, “
Viscoelastic Behavior of low molecular weight polystyrene
,”
J. Polym. Sci., Part A-2
9
,
209
(
1971
).
32.
D. J.
Plazek
,
X. D.
Zheng
, and
K. L.
Ngai
, “
Viscoelastic properties of amorphous polymers. I. Different temperature dependences of segmental relaxation and terminal dispersion
,”
Macromolecules
25
,
4920
(
1992
).
33.
T.
Inoue
,
H.
Okamoto
, and
K.
Osaki
, “
Birefringence of amorphous polymers. 1. Dynamic measurement on polystyrene
,”
Macromolecules
24
,
5670
(
1991
).
34.
Y.
Ding
and
A. P.
Sokolov
, “
Breakdown of time-temperature superposition principle and universality of chain dynamics in polymers
,”
Macromolecules
39
,
3322
(
2006
).
35.
L. I.
Pallade
,
V.
Verney
, and
P.
Attane
, “
Time-temperature superposition and linear viscoelasticity of polybutadienes
,”
Macromolecules
28
,
7051
(
1995
).
36.
A.
Benallal
,
G.
Marin
,
J. P.
Monfort
, and
C.
Derail
, “
Linear viscoelasticity revisited: The relaxation function of monodisperse polymer melts
,”
Macromolecules
26
,
7229
(
1993
).
37.
A.
Herrmann
,
B.
Kresse
,
J.
Gmeiner
,
A. F.
Privalov
,
D.
Kruk
,
F.
Fujara
, and
E. A.
Rössler
, “
Protracted crossover to reptation dynamics: A field cycling 1H NMR study including extremely low frequencies
,”
Macromolecules
45
,
1408
(
2012
).
38.
K.
Nusser
,
S.
Neueder
,
G. J.
Schneider
,
M.
Meyer
,
W.
Pyckhout-Hintzen
,
L.
Willner
,
A.
Radulescu
, and
D.
Richter
Conformations of silica-poly(ethylene–propylene) nanocomposites
Macromolecules
43
,
9837
(
2010
).
39.
Ch.
Ohrt
,
T.
Koschine
,
K.
Rätzke
,
F.
Faupel
,
L.
Willner
, and
G. J.
Schneider
, “
Free-volume in PEP-silica nanocomposites with varying molecular weight
,”
Polymer
55
,
143
(
2014
).
40.
K.
Schröter
,
S. A.
Hutcheson
,
X.
Shi
,
A.
Mandanici
, and
G. B.
McKenna
, “
Dynamic shear modulus of glycerol: Corrections due to instrument compliance
,”
J. Chem. Phys.
125
,
214507
(
2006
).
41.
J.
Läuger
and
H.
Stettin
, “
Radial compliance in oscillatory measurements
,” Technical note,
Anton Paar Germany GmbH
,
2010
.
42.
T.
Nill
, “
Measurement of glycerol in the glassy state–investigation and correction of instrument radial compliance
,” Extended Application Report,
Anton Paar Germany GmbH
,
2014
.
43.
K.
Schröter
and
E.
Donth
, “
Viscosity and shear response at the dynamic glass transition of glycerol
,”
J. Chem. Phys.
113
,
9101
(
2000
).
44.
M.
Hofmann
,
C.
Gainaru
,
B.
Cetinkaya
,
R.
Valiullin
,
N.
Fatkullin
, and
E. A.
Rössler
, “
Field-cycling relaxometry as a molecular rheology technique: Common analysis of NMR, shear modulus and dielectric loss data of polymers vs. dendrimers
,”
Macromolecules
48
,
7521
(
2015
).
45.
R.
Kahlau
,
D.
Kruk
,
T.
Blochowicz
,
V. N.
Novokov
, and
E. A.
Rössler
, “
Generalizationof the Cole-Davidson and Kohlrausch functions to describe the primary response of glass-forming systems
,”
J. Phys.: Condens. Matter
22
,
365101
(
2010
).
46.
W.
Götze
and
L.
Sjögren
, “
Relaxation processes in supercooled liquids
,”
Rep. Prog. Phys.
55
,
241
(
1992
).
47.
H. J.
Unidad
,
M. A.
Goad
,
A. R.
Bras
,
M.
Zamponi
,
R.
Faust
,
J.
Allgaier
,
W.
Pyckhout-Hintzen
,
A.
Wischnewski
,
D.
Richter
, and
L. J.
Fetters
, “
Consequences of increasing packing length on the dynamics of polymer melts
,”
Macromolecules
48
,
6638
(
2015
).
48.
L. J.
Fetters
,
D. J.
Lohse
,
D.
Richter
,
T. A.
Witten
, and
A.
Zirkel
, “
Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties
,”
Macromolecules
27
,
4639
(
1994
).
49.
J.
Ramirez
and
A. E.
Likhtman
, “
Rheology of entangled polymers: Toolkit for analysis of theory & experiment
,” http://www.reptate.com/, Version 1.0, 14 April
2009
.
50.
M.
Baumgaertel
,
A.
Schausberger
, and
H. H.
Winter
, “
The relaxation of polymers with flexible chain of uniform length
,”
Rheol. Acta
29
,
400
(
1990
).
51.
E. W.
Montroll
and
J. T.
Bendler
, “
On Levy (or stable) distributions and the Williams-Watts model of dielectric relaxation
,”
J. Stat. Phys.
34
,
129
(
1984
).
You do not currently have access to this content.