It has been shown that CO oxidation on Pd(111) under ultrahigh vacuum conditions can suffer rare transitions between two stable states triggered by weak intrinsic perturbations. Here we study the effects of adding controlled noise by varying the concentrations of O2 and CO that feed the vacuum chamber, while the total flux stays constant. In addition to the regime of rare transitions between states of different CO2 reaction rates induced by intrinsic fluctuations, we found three distinct effects of external noise depending on its strength: small noise suppresses transitions and stabilizes the upper rate state; medium noise induces bursting; and large noise gives rise to reversible transitions in both directions. To explain some of the features present in the dynamics, we propose an extended stochastic model that includes a global coupling through the gas phase to account for the removal of CO gas caused by the adsorption of the Pd surface. The numerical simulations based in the model show a qualitative agreement with the noise-induced transitions found in experiments, but suggest that more complex spatial phenomena are present in the observed fluctuations.

1.
M.
Bär
,
M.
Hildebrand
,
M.
Eiswirth
,
M.
Falcke
,
H.
Engel
, and
M.
Neufeld
, “
Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities
,”
Chaos
4
(
3
),
499
508
(
1994
).
2.
P. S.
Bodega
,
S.
Alonso
, and
H. H.
Rotermund
, “
Effects of external global noise on the catalytic CO oxidation on Pt(110)
,”
J. Chem. Phys.
130
,
084704
(
2009
).
3.
J.
Cisternas
,
D.
Escaff
,
O.
Descalzi
, and
S.
Wehner
, “
Stochastic model calculation for carbon monoxide oxidation on Iridium(111) surfaces
,”
Int. J. Bifurcation Chaos
19
(
10
),
3461
3472
(
2009
).
4.
J.
Cisternas
,
D.
Escaff
,
O.
Descalzi
, and
S.
Wehner
, “
Carbon monoxide oxidation on Iridium(111) surfaces under colored noise
,”
Int. J. Bifurcation Chaos
20
(
2
),
243
254
(
2010
).
5.
J.
Cisternas
,
S.
Karpitschka
, and
S.
Wehner
, “
Travelling fronts of the CO oxidation on Pd(111) with coverage-dependent diffusion
,”
J. Chem. Phys.
141
,
164106
(
2014
).
6.
J.
Cisternas
,
R.
Lecaros
, and
S.
Wehner
, “
Carbon monoxide oxidation on Iridium(111) surfaces driven by strongly colored noise
,”
Eur. J. Phys. D
62
(
1
),
91
102
(
2011
).
7.
J.
Cisternas
,
S.
Wehner
, and
O.
Descalzi
, “
CO oxidation on Ir(111) surfaces under large non-Gaussian noise
,”
J. Chem. Phys.
137
,
064105
(
2012
).
8.
J.
Feng
,
W.
Xu
,
Y.
Xu
,
X.
Wang
, and
J.
Kurths
, “
Lévy noise-induced phenomena in CO oxidation on Ir(111) surfaces
,”
Chaos
27
,
073105
(
2017
).
9.
Y.
Hayase
,
S.
Wehner
,
J.
Küppers
, and
H. R.
Brand
, “
External noise imposed on the reaction-diffusion system CO + O2 → CO2 on Ir(111) surfaces: Experiment and theory
,”
Phys. Rev. E
69
,
021609
(
2004
).
10.
P.
Hoffmann
,
S.
Wehner
,
D.
Schmeisser
,
H. R.
Brand
, and
J.
Küppers
, “
Noise-induced spatiotemporal patterns in a bistable reaction-diffusion system: Photo-electron emission microscopy experiments and modeling of the CO oxidation reaction on Ir(111)
,”
Phys. Rev. E
73
,
056123
(
2006
).
11.
A.
Hutt
, “
Additive noise may change the stability of nonlinear systems
,”
Europhys. Lett.
84
,
34003
(
2008
).
12.
S.
Karpitschka
,
S.
Wehner
, and
J.
Küppers
, “
Reaction hysteresis of the CO + O2 → CO2 reaction on Palladium(111)
,”
J. Chem. Phys.
130
,
054706
(
2009
).
13.
H.
Levine
and
X.
Zou
, “
Catalysis at single-crystal Pt(110) surfaces: Global coupling and standing waves
,”
Phys. Rev. E
48
(
1
),
50
64
(
1993
).
14.
A. G.
Papathanasiou
,
J.
Wolff
,
I. G.
Kevrekidis
,
H. H.
Rotermund
, and
G.
Ertl
, “
Some twists and turns in the path of improving surface activity
,”
Chem. Phys. Lett.
358
,
407
412
(
2002
).
15.
M.
Pineda
and
R.
Toral
, “
External noise-induced phenomena in CO oxidation on single crystal surfaces
,”
J. Chem. Phys.
130
,
124704
(
2009
).
16.
M.
Tammaro
and
J. W.
Evans
, “
Chemical diffusivity and wave propagation in surface reactions: Lattice-gas model mimicking CO-oxidation with high CO-mobility
,”
J. Chem. Phys.
108
,
762
773
(
1998
).
17.
A.
von Oertzen
,
H. H.
Rotermund
, and
S.
Nettesheim
, “
Investigation of diffusion of CO adsorbed on Pd(111) by a combined PEEM/LITD technique
,”
Chem. Phys. Lett.
199
(
1-2
),
131
137
(
1992
).
18.
S.
Wehner
, “
The CO oxidation reaction on Ir(111) surfaces: Bistability, noise and spatio-temporal patterns in experiment and modeling
,”
Int. J. Bifurcation Chaos
19
(
8
),
2637
2675
(
2009
).
19.
S.
Wehner
,
F.
Baumann
, and
J.
Küppers
, “
Kinetic hysteresis in the CO oxidation reaction on Ir(111) surfaces
,”
Chem. Phys. Lett.
370
,
126
(
2003
).
20.
S.
Wehner
,
F.
Baumann
,
M.
Ruckdeschel
, and
J.
Küppers
, “
Kinetic phase transitions in the reaction CO + O → CO2 on Ir(111) surfaces
,”
J. Chem. Phys.
119
,
6823
(
2003
).
21.
S.
Wehner
,
J.
Cisternas
,
O.
Descalzi
, and
J.
Küppers
, “
Noisy CO oxidation on Iridium(111) surfaces—Experiments explained by theory under realistic assumptions
,”
Eur. Phys. J. Spec. Top.
223
,
21
41
(
2014
).
22.
S.
Wehner
,
Y.
Hayase
,
H. R.
Brand
, and
J.
Küppers
, “
Multiplicative temperature noise applied to a bistable surface reaction: Experiment and theory
,”
J. Phys. Chem. B
108
,
14452
14461
(
2004
).
23.
S.
Wehner
,
P.
Hoffmann
,
D.
Schmeisser
,
H. R.
Brand
, and
J.
Küppers
, “
Spatiotemporal patterns of external noise-induced transitions in a bistable reaction-diffusion system: Photoelectron emission microscopy experiments and modeling
,”
Phys. Rev. Lett.
95
,
038301
(
2005
).
24.
S.
Wehner
,
P.
Hoffmann
,
D.
Schmeisser
,
H. R.
Brand
, and
J.
Küppers
, “
The consequences of anisotropic diffusion and noise: PEEM at the CO oxidation reaction on stepped Ir(977) surfaces
,”
Chem. Phys. Lett.
423
,
39
(
2006
).
25.
S.
Wehner
,
S.
Karpitschka
,
Y.
Burkov
,
D.
Schmeisser
,
J.
Küppers
, and
H. R.
Brand
, “
Stochastic aspects of pattern formation during the catalytic oxidation of CO on Pd(111) surfaces
,”
Physica D
239
(
11
),
746
751
(
2010
).
You do not currently have access to this content.