Using machine learning (ML), we predict the partition functions and, thus, all thermodynamic properties of atomic and molecular fluids over a wide range of temperatures and pressures. Our approach is based on training neural networks using, as a reference, the results of a few flat-histogram simulations. The neural network weights so obtained are then used to predict fluid properties that are shown to be in excellent agreement with the experiment and with simulation results previously obtained on argon, carbon dioxide, and water. In particular, the ML predictions for the Gibbs free energy, Helmholtz free energy, and entropy are shown to be highly accurate over a wide range of conditions and states for bulk phases as well as for the conditions of phase coexistence. Our ML approach thus provides access instantly to G, A, and S, thereby eliminating the need to carry out any additional simulations to explore the dependence of the fluid properties on the conditions of temperature and pressure. This is of particular interest, for e.g., the screening of new materials, as well as in the parameterization of force fields, for which this ML approach provides a rapid way to assess the impact of new sets of parameters on the system properties.

1.
M.
Rupp
,
Int. J. Quantum Chem.
115
,
1058
(
2015
).
2.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
3.
K.
Yao
,
J. E.
Herr
,
S. N.
Brown
, and
J.
Parkhill
,
J. Phys. Chem. Lett.
8
,
2689
(
2017
).
4.
Q.
Wei
,
R. G.
Melko
, and
J. Z.
Chen
,
Phys. Rev. E
95
,
032504
(
2017
).
6.
R.
Olivares-Amaya
,
C.
Amador-Bedolla
,
J.
Hachmann
,
S.
Atahan-Evrenk
,
R. S.
Sanchez-Carrera
,
L.
Vogt
, and
A.
Aspuru-Guzik
,
Energy Environ. Sci.
4
,
4849
(
2011
).
7.
H.
Sidky
and
J. K.
Whitmer
,
J. Chem. Phys.
148
,
104111
(
2018
).
8.
A. J.
Ballard
,
R.
Das
,
S.
Martiniani
,
D.
Mehta
,
L.
Sagun
,
J. D.
Stevenson
, and
D. J.
Wales
,
Phys. Chem. Chem. Phys.
19
,
12585
(
2017
).
9.
L. M.
Ghiringhelli
,
J.
Vybiral
,
S. V.
Levchenko
,
C.
Draxl
, and
M.
Scheffler
,
Phys. Rev. Lett.
114
,
105503
(
2015
).
10.
A.
Seko
,
H.
Hayashi
,
K.
Nakayama
,
A.
Takahashi
, and
I.
Tanaka
,
Phys. Rev. B
95
,
144110
(
2017
).
11.
S.
Shukla
,
M.
Meigooni
,
C.
Zhao
, and
D.
Shukla
,
Biophys. J.
112
,
349a
(
2017
).
12.
P.
Raccuglia
,
K. C.
Elbert
,
P. D.
Adler
,
C.
Falk
,
M. B.
Wenny
,
A.
Mollo
,
M.
Zeller
,
S. A.
Friedler
,
J.
Schrier
, and
A. J.
Norquist
,
Nature
533
,
73
(
2016
).
13.
K.
Takahashi
and
Y.
Tanaka
,
Dalton Trans.
45
,
10497
(
2016
).
14.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
11
,
2087
(
2015
).
15.
N.
Portman
and
I.
Tamblyn
,
J. Comput. Phys.
350
,
871
(
2017
).
16.
C. M.
Handley
,
G. I.
Hawe
,
D. B.
Kell
, and
P. L.
Popelier
,
Phys. Chem. Chem. Phys.
11
,
6365
(
2009
).
17.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Chem. Chem. Phys.
18
,
13754
(
2016
).
18.
M.
Fernandez
,
J. I.
Abreu
,
H.
Shi
, and
A. S.
Barnard
,
ACS Comb. Sci.
18
,
661
(
2016
).
19.
G.
Hautier
,
C. C.
Fischer
,
A.
Jain
,
T.
Mueller
, and
G.
Ceder
,
Chem. Mater.
22
,
3762
(
2010
).
20.
T. F.
Cerqueira
,
R.
Sarmiento-Pérez
,
M.
Amsler
,
F.
Nogueira
,
S.
Botti
, and
M. A.
Marques
,
J. Chem. Theory Comput.
11
,
3955
(
2015
).
21.
J. D.
Evans
and
F.-X.
Coudert
,
Chem. Mater.
29
,
7833
(
2017
).
22.
M.
Fernandez
,
P. G.
Boyd
,
T. D.
Daff
,
M. Z.
Aghaji
, and
T. K.
Woo
,
J. Phys. Chem. Lett.
5
,
3056
(
2014
).
23.
C. M.
Simon
,
R.
Mercado
,
S. K.
Schnell
,
B.
Smit
, and
M.
Haranczyk
,
Chem. Mater.
27
,
4459
(
2015
).
24.
A. W.
Long
and
A. L.
Ferguson
,
J. Phys. Chem. B
118
,
4228
(
2014
).
25.
M.
Fernandez
,
T. K.
Woo
,
C. E.
Wilmer
, and
R. Q.
Snurr
,
J. Phys. Chem. C
117
,
7681
(
2013
).
26.
A.
Lavecchia
,
Drug Discovery Today
20
,
318
(
2015
).
27.
B.
Meredig
,
A.
Agrawal
,
S.
Kirklin
,
J. E.
Saal
,
J.
Doak
,
A.
Thompson
,
K.
Zhang
,
A.
Choudhary
, and
C.
Wolverton
,
Phys. Rev. B
89
,
094104
(
2014
).
28.
F. A.
Faber
,
A.
Lindmaa
,
O. A.
Von Lilienfeld
, and
R.
Armiento
,
Phys. Rev. Lett.
117
,
135502
(
2016
).
29.
J.
Lee
,
A.
Seko
,
K.
Shitara
,
K.
Nakayama
, and
I.
Tanaka
,
Phys. Rev. B
93
,
115104
(
2016
).
30.
A. W.
Thornton
,
C. M.
Simon
,
J.
Kim
,
O.
Kwon
,
K. S.
Deeg
,
K.
Konstas
,
S. J.
Pas
,
M. R.
Hill
,
D. A.
Winkler
,
M.
Haranczyk
 et al.,
Chem. Mater.
29
,
2844
(
2017
).
31.
P.
Geiger
and
C.
Dellago
,
J. Chem. Phys.
139
,
164105
(
2013
).
32.
G.
Pilania
,
C.
Wang
,
X.
Jiang
,
S.
Rajasekaran
, and
R.
Ramprasad
,
Sci. Rep.
3
,
2810
(
2013
).
33.
A. G.
Kusne
,
T.
Gao
,
A.
Mehta
,
L.
Ke
,
M. C.
Nguyen
,
K.-M.
Ho
,
V.
Antropov
,
C.-Z.
Wang
,
M. J.
Kramer
,
C.
Long
 et al.,
Sci. Rep.
4
,
6367
(
2014
).
34.
F.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
,
Int. J. Quantum Chem.
115
,
1094
(
2015
).
35.
L.
Ward
,
A.
Agrawal
,
A.
Choudhary
, and
C.
Wolverton
,
npj Comput. Mater.
2
,
16028
(
2016
).
36.
D.
Campi
,
D.
Donadio
,
G. C.
Sosso
,
J.
Behler
, and
M.
Bernasconi
,
J. Appl. Phys.
117
,
015304
(
2015
).
37.
C. L.
Phillips
and
G. A.
Voth
,
Soft Matter
9
,
8552
(
2013
).
38.
V.
Botu
and
R.
Ramprasad
,
Phys. Rev. B
92
,
094306
(
2015
).
39.
K.
Yao
,
J. E.
Herr
, and
J.
Parkhill
,
J. Chem. Phys.
146
,
014106
(
2017
).
40.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
41.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
42.
V.
Botu
and
R.
Ramprasad
,
Int. J. Quantum Chem.
115
,
1074
(
2015
).
43.
J. P.
Janet
and
H. J.
Kulik
,
Chem. Sci.
8
,
5137
(
2017
).
44.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
,
Nat. Commun.
8
,
872
(
2017
).
45.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
,
Phys. Rev. B
88
,
054104
(
2013
).
46.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
47.
F.
Wang
and
D.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
48.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
66
,
056703
(
2002
).
49.
J. K.
Singh
and
J. R.
Errington
,
J. Phys. Chem. B
110
,
1369
(
2006
).
50.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
145
,
184504
(
2016
).
51.
F.
Calvo
,
E.
Pahl
,
M.
Wormit
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
52
,
7583
(
2013
).
52.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
144
,
124510
(
2016
).
53.
D. W.
Siderius
and
V. K.
Shen
,
J. Phys. Chem. C
117
,
5861
(
2013
).
54.
K.
Gopalsamy
,
C.
Desgranges
, and
J.
Delhommelle
,
J. Phys. Chem. C
121
,
24692
(
2017
).
55.
D. J.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd ed., edited by
D. J.
Evans
and
G.
Morriss
(
Cambridge University Press
,
Cambridge
,
2008
).
56.
C.
Desgranges
and
J.
Delhommelle
,
Phys. Rev. B
78
,
184202
(
2008
).
57.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
136
,
184107
(
2012
).
58.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
136
,
184108
(
2012
).
59.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
140
,
104109
(
2014
).
60.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Theory Comput.
11
,
5401
(
2015
).
61.
C.
Desgranges
,
L.
Widhalm
, and
J.
Delhommelle
,
J. Phys. Chem. B
120
,
5255
(
2016
).
62.
M. B.
Christopher
,
Pattern Recognition and Machine Learning
(
Springer-Verlag
,
New York
,
2016
).
63.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
Von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Mller
,
J. Chem. Theory Comput.
9
,
3404
(
2013
).
64.
P. O.
Dral
,
O. A.
von Lilienfeld
, and
W.
Thiel
,
J. Chem. Theory Comput.
11
,
2120
(
2015
).
65.
J. B.
Witkoskie
and
D. J.
Doren
,
J. Chem. Theory Comput.
1
,
14
(
2005
).
66.
Y.
LeCun
,
L.
Bottou
,
G. B.
Orr
, and
K.-R.
Müller
,
Efficient BackProp
(
Springer
,
1998
).
67.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
68.
J. J.
Potoff
and
J. I.
Siepmann
,
AIChE J.
47
,
1676
(
2001
).
69.
K. S.
Walton
,
A. R.
Millward
,
D.
Dubbeldam
,
H.
Frost
,
J. J.
Low
,
O. M.
Yaghi
, and
R. Q.
Snurr
,
J. Am. Chem. Soc.
130
,
406
(
2008
).
70.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
71.
Q.
Yan
,
R.
Faller
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
,
8745
(
2002
).
72.
G.
Gazenmüller
and
P. J.
Camp
,
J. Chem. Phys.
127
,
154504
(
2007
).
73.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
130
,
244109
(
2009
).
74.
F. A.
Escobedo
and
F. J.
Martinez-Veracoechea
,
J. Chem. Phys.
127
,
174103
(
2007
).
75.
F. A.
Escobedo
and
F. J.
Martinez-Veracoechea
,
J. Chem. Phys.
129
,
154107
(
2008
).
76.
M.
Muller
and
W.
Paul
,
J. Chem. Phys.
100
,
719
(
1994
).
77.
K. S.
Rane
,
S.
Murali
, and
J. R.
Errington
,
J. Chem. Theory Comput.
9
,
2552
(
2013
).
78.
K. S.
Rane
and
J. R.
Errington
,
J. Phys. Chem. B
117
,
8018
(
2013
).
79.
V. K.
Shen
and
J. R.
Errington
,
J. Chem. Phys.
122
,
064508
(
2005
).
80.
W.
Shi
and
E. J.
Maginn
,
J. Chem. Theory Comput.
3
,
1451
(
2007
).
81.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
82.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
83.
N. B.
Vargaftik
,
Y. K.
Vinoradov
, and
V. S.
Yargin
,
Handbook of Physical Properties of Liquids and Gases
(
Begell House
,
New York
,
1996
).
84.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Eng. Data
62
,
4032
(
2017
).
85.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
86.
M. R.
Shirts
and
J. D.
Chodera
,
J. Chem. Phys.
129
,
124105
(
2008
).
87.
N. B.
Wilding
,
Phys. Rev. E
52
,
602
(
1995
).
88.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
10914
(
1998
).
89.
W.
Shi
,
X.
Zhao
, and
J. K.
Johnson
,
Mol. Phys.
100
,
2139
(
2002
).
90.
N. A.
Mahynski
,
S.
Jiao
,
H. W.
Hatch
,
M. A.
Blanco
, and
V. K.
Shen
,
J. Chem. Phys.
148
,
194105
(
2018
).
91.
F. A.
Escobedo
,
J. Chem. Phys.
140
,
094102
(
2014
).
You do not currently have access to this content.