Understanding hydrogen diffusion is important for applications such as hydrogen storage and spillover materials. On semiconductors, where paired electron acceptors and donors stabilize each other, the hydrogen diffusion depends on the number of adsorbed fragments. Using density functional theory, we investigate the effects of preadsorbed hydrogens on activation energy and reaction path for hydrogen diffusion on MgO(100): the presence of an unpaired hydrogen causes a diffusion, on O-sites, above the surface with a lower activation energy compared to the case of paired hydrogens where the diffusion distorts the surface. This effect is missing for diffusion on Mg-sites.
REFERENCES
1.
S.
Prada
, L.
Giordano
, and G.
Pacchioni
, “Charging of gold atoms on doped MgO and CaO: Identifying the key parameters by DFT calculations
,” J. Phys. Chem. C
117
, 9943
–9951
(2013
).2.
S.
Tosoni
, D.
Spinnato
, and G.
Pacchioni
, “DFT study of CO2 activation on doped and ultrathin MgO films
,” J. Phys. Chem. C
119
, 27594
–27602
(2015
).3.
C.
Di Valentin
, A.
Del Vitto
, G.
Pacchioni
, S.
Abbet
, A. S.
Wörz
, K.
Judai
, and U.
Heiz
, “Chemisorption and reactivity of methanol on MgO thin films
,” J. Phys. Chem. B
106
, 11961
–11969
(2002
).4.
K.
Honkala
, A.
Hellman
, and H.
Grönbeck
, “Water dissociation on MgO/Ag(100): Support induced stabilization or electron pairing?
,” J. Phys. Chem. C
114
, 7070
–7075
(2010
).5.
H. A.
Hussein
, J. B. A.
Davis
, and R. L.
Johnston
, “DFT global optimisation of gas-phase and MgO-supported sub-nanometre AuPd clusters
,” Phys. Chem. Chem. Phys.
18
, 26133
–26143
(2016
).6.
A.
Markmann
, J. L.
Gavartin
, and A. L.
Shluger
, “Chemisorption of HCl to the MgO(001) surface: A DFT study
,” Phys. Chem. Chem. Phys.
8
, 4359
–4367
(2006
).7.
V. K.
Díez
, J. I.
Di Cosimo
, C.
Ferreti
, and C. R.
Apesteguía
, “Chapter 1: Basic catalysis on MgO: Generation, characterization and catalytic properties of active sites
,” in Catalysis
(SPR-Catalysis
, 2014
).8.
K.
Christmann
, “Interaction of hydrogen with solid surfaces
,” Surf. Sci. Rep.
9
, 1
–163
(1988
).9.
A.
Züttel
, “Materials for hydrogen storage
,” Mater. Today
6
, 24
–33
(2003
).10.
C.
Weidenthaler
and M.
Felderhoff
, “Solid-state hydrogen storage for mobile applications: Quo Vadis?
,” Energy Environ. Sci.
4
, 2495
–2502
(2011
).11.
A. A.
Latimer
, A. R.
Kulkarni
, H.
Aljama
, J. H.
Montoya
, J. S.
Yoo
, C.
Tsai
, F.
Abild-Pedersen
, F.
Studt
, and J. K.
Norskov
, “Understanding trends in C-H bond activation in heterogeneous catalysis
,” Nat. Mater.
16
, 225
–229
(2017
).12.
R.
Prins
, V. K.
Palfi
, and M.
Reiher
, “Hydrogen spillover to nonreducible supports
,” J. Phys. Chem. C
116
, 14274
–14283
(2012
).13.
R.
Prins
, “Hydrogen spillover. Facts and fiction
,” Chem. Rev.
112
, 2714
–2738
(2012
).14.
R.
Shi
, F.
Wang
, X.
Mu
, Y.
Li
, X.
Huang
, and W.
Shen
, “MgO-supported Cu nanoparticles for efficient transfer dehydrogenation of primary aliphatic alcohols
,” Catal. Commun.
11
, 306
–309
(2009
).15.
M. B.
Ley
, L. H.
Jepsen
, Y.-S.
Lee
, Y. W.
Cho
, J. M.
Bellosta von Colbe
, M.
Dornheim
, M.
Rokni
, J. O.
Jensen
, M.
Sloth
, Y.
Filinchuk
, J. E.
Jørgensen
, F.
Besenbacher
, and T. R.
Jensen
, “Complex hydrides for hydrogen storage—New perspectives
,” Mater. Today
17
, 122
–128
(2014
).16.
G.
Barkhordarian
, T.
Klassen
, and R.
Bormann
, “Effect of Nb2O5 content on hydrogen reaction kinetics of Mg
,” J. Alloys Compd.
364
, 242
–246
(2004
).17.
S.
Er
, G. A.
de Wijs
, and G.
Brocks
, “Tuning the hydrogen storage in magnesium alloys
,” J. Phys. Chem. Lett.
1
, 1982
–1986
(2010
).18.
G.
Wu
, J.
Zhang
, Y.
Wu
, Q.
Li
, K.
Chou
, and X.
Bao
, “Adsorption and dissociation of hydrogen on MgO surface: A first-principles study
,” J. Alloys Compd.
480
, 788
–793
(2009
).19.
I. A.
Pašti
, M.
Baljozović
, and N. V.
Skorodumova
, “Adsorption of nonmetallic elements on defect-free MgO(001) surface—DFT study
,” Surf. Sci.
632
, 39
–49
(2015
).20.
H.
Kobayashi
, D. R.
Salahub
, and T.
Ito
, “Dissociative adsorption of hydrogen molecule on MgO surfaces studied by the density functional method
,” J. Phys. Chem.
98
, 5487
–5492
(1994
).21.
H.-Y. T.
Chen
, L.
Giordano
, and G.
Pacchioni
, “From heterolytic to homolytic H2 dissociation on nanostructured MgO(001) films as a function of the metal support
,” J. Phys. Chem. C
117
, 10623
–10629
(2013
).22.
S.
Coluccia
, F.
Boccuzzi
, G.
Ghiotti
, and C.
Mirra
, “Evidence for heterolytic dissociation of H2 on the surface of thermally activated MgO powders
,” Z. Phys. Chem.
121
, 141
(1980
).23.
B.
Li
and H.
Metiu
, “Does halogen adsorption activate the oxygen atom on an oxide surface? I. A study of Br2 and HBr adsorption on La2O3 and La2O3 doped with Mg or Zr
,” J. Phys. Chem. C
116
, 4137
–4148
(2012
).24.
N.
Zobel
and F.
Behrendt
, “Activation energy for hydrogen abstraction from methane over Li-doped MgO: A density functional theory study
,” J. Chem. Phys.
125
, 074715
(2006
).25.
M.
Chiesa
, M. C.
Paganini
, E.
Giamello
, D. M.
Murphy
, C.
Di Valentin
, and G.
Pacchioni
, “Excess electrons stabilized on ionic oxide surfaces
,” Acc. Chem. Res.
39
, 861
–867
(2006
).26.
I. E.
Castelli
, I.-C.
Man
, S.-G.
Soriga
, V.
Parvulescu
, N. B.
Halck
, and J.
Rossmeisl
, “Role of the band gap for the interaction energy of coadsorbed fragments
,” J. Phys. Chem. C
121
, 18608
(2017
).27.
M.
Calatayud
, A.
Markovits
, and C.
Minot
, “Electron-count control on adsorption upon reducible and irreducible clean metal-oxide surfaces
,” Catal. Today
89
, 269
–278
(2004
).28.
M.
Calatayud
, A.
Markovits
, M.
Menetrey
, B.
Mguig
, and C.
Minot
, “Adsorption on perfect and reduced surfaces of metal oxides
,” Catal. Today
85
, 125
–143
(2003
).29.
T.
Ito
, M.
Kuramoto
, M.
Yoshioka
, and T.
Tokuda
, “Active sites for hydrogen adsorption on magnesium oxide
,” J. Phys. Chem.
87
, 4411
–4416
(1983
).30.
A. L.
Shluger
, J. D.
Gale
, and C. R. A.
Catlow
, “Molecular properties of the magnesia surface
,” J. Phys. Chem.
96
, 10389
–10397
(1992
).31.
E. N.
Gribov
, S.
Bertarione
, D.
Scarano
, C.
Lamberti
, G.
Spoto
, and A.
Zecchina
, “Vibrational and thermodynamic properties of H2 adsorbed on MgO in the 300−20 K interval
,” J. Phys. Chem. B
108
, 16174
–16186
(2004
).32.
H.
Metiu
, S.
Chrétien
, Z.
Hu
, B.
Li
, and X.
Sun
, “Chemistry of Lewis acid–base pairs on oxide surfaces
,” J. Phys. Chem. C
116
, 10439
–10450
(2012
).33.
W. F.
Schneider
, K. C.
Hass
, M.
Miletic
, and J. L.
Gland
, “Dramatic cooperative effects in adsorption of NOx on MgO(001)
,” J. Phys. Chem. B
106
, 7405
–7413
(2002
).34.
P.
Broqvist
, H.
Grönbeck
, E.
Fridell
, and I.
Panas
, “Characterization of NOx species adsorbed on BaO: Experiment and theory
,” J. Phys. Chem. B
108
, 3523
–3530
(2004
).35.
G.
Pacchioni
, “First principles calculations on oxide-based heterogeneous catalysts and photocatalysts: Problems and advances
,” Catal. Lett.
145
, 80
–94
(2015
).36.
D.
Mei
, Q.
Ge
, J.
Szanyi
, and C. H. F.
Peden
, “First-principles analysis of NOx adsorption on anhydrous γ-Al2O3 surfaces
,” J. Phys. Chem. C
113
, 7779
–7789
(2009
).37.
J.
Enkovaara
, C.
Rostgaard
, J. J.
Mortensen
, J.
Chen
, M.
Dułak
, L.
Ferrighi
, J.
Gavnholt
, C.
Glinsvad
, V.
Haikola
, H. A.
Hansen
, H. H.
Kristoffersen
, M.
Kuisma
, A. H.
Larsen
, L.
Lehtovaara
, M.
Ljungberg
, O.
Lopez-Acevedo
, P. G.
Moses
, J.
Ojanen
, T.
Olsen
, V.
Petzold
, N. A.
Romero
, J.
Stausholm-Møller
, M.
Strange
, G. A.
Tritsaris
, M.
Vanin
, M.
Walter
, B.
Hammer
, H.
Häkkinen
, G. K. H.
Madsen
, R. M.
Nieminen
, J. K.
Nørskov
, M.
Puska
, T. T.
Rantala
, J.
Schiøtz
, K. S.
Thygesen
, and K. W.
Jacobsen
, “Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method
,” J. Phys.: Condens. Matter
22
, 253202
(2010
).38.
J. J.
Mortensen
, L. B.
Hansen
, and K. W.
Jacobsen
, “Real-space grid implementation of the projector augmented wave method
,” Phys. Rev. B
71
, 035109
(2005
).39.
A. H.
Larsen
, J. J.
Mortensen
, J.
Blomqvist
, I. E.
Castelli
, R.
Christensen
, M.
Dułak
, J.
Friis
, M. N.
Groves
, B.
Hammer
, C.
Hargus
, E. D.
Hermes
, P. C.
Jennings
, P. B.
Jensen
, J.
Kermode
, J. R.
Kitchin
, E. L.
Kolsbjerg
, J.
Kubal
, K.
Kaasbjerg
, S.
Lysgaard
, J. B.
Maronsson
, T.
Maxson
, T.
Olsen
, L.
Pastewka
, A.
Peterson
, C.
Rostgaard
, J.
Schiøtz
, O.
Schütt
, M.
Strange
, K. S.
Thygesen
, T.
Vegge
, L.
Vilhelmsen
, M.
Walter
, Z.
Zeng
, and K. W.
Jacobsen
, “The atomic simulation environment—A Python library for working with atoms
,” J. Phys.: Condens. Matter
29
, 273002
(2017
).40.
B.
Hammer
, L. B.
Hansen
, and J. K.
Nørskov
, “Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
,” Phys. Rev. B
59
, 7413
(1999
).41.
M.
Bajdich
, J. K.
Nørskov
, and A.
Vojvodic
, “Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules
,” Phys. Rev. B
91
, 155401
(2015
).42.
J.
Wellendorff
, K. T.
Lundgaard
, A.
Møgelhøj
, V.
Petzold
, D. D.
Landis
, J. K.
Nørskov
, T.
Bligaard
, and K. W.
Jacobsen
, “Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
,” Phys. Rev. B
85
, 235149
(2012
).43.
D. O.
Scanlon
, A.
Walsh
, B. J.
Morgan
, M.
Nolan
, J.
Fearon
, and G. W.
Watson
, “Surface sensitivity in lithium-doping of MgO: A density functional theory study with correction for on-site Coulomb interactions
,” J. Phys. Chem. C
111
, 7971
–7979
(2007
).44.
G.
Henkelman
, B. P.
Uberuaga
, and H.
Jónsson
, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths
,” J. Chem. Phys.
113
, 9901
–9904
(2000
).45.
G.
Henkelman
, A.
Arnaldsson
, and H.
Jónsson
, “A fast and robust algorithm for Bader decomposition of charge density
,” Comput. Mater. Sci.
36
, 354
–360
(2006
).46.
L.
Kristinsdóttir
and E.
Skúlason
, “A systematic DFT study of hydrogen diffusion on transition metal surfaces
,” Surf. Sci.
606
, 1400
–1404
(2012
).47.
W.
Fang
, J. O.
Richardson
, J.
Chen
, X.-Z.
Li
, and A.
Michaelides
, “Simultaneous deep tunneling and classical hopping for hydrogen diffusion on metals
,” Phys. Rev. Lett.
119
, 126001
(2017
).48.
FigShare—A repository where users can make all their research outputs available in a citable, shareable, and discoverable manner.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.