Thermodiffusion or the Ludwig-Soret effect is known as the cross effect between the temperature gradient and induced separation of mixture species in multicomponent mixtures. The performance of the boundary driven non-equilibrium molecular dynamics enhanced heat exchange (eHEX) algorithm was validated by evaluating the sign and magnitude of the thermodiffusion process in methane/n-butane/n-dodecane (nC1–nC4–nC12) ternary mixtures. The eHEX algorithm consists of an extended version of the HEX algorithm with an improved energy conservation property. In addition to this, the transferable potentials for phase equilibria-united atom augmented force field was employed in all molecular dynamics (MD) simulations to accurately represent molecular interactions in the fluid. Our newly employed MD algorithm was capable to appropriately reflect the thermophobicity concept and the coupled effect of relative density and mole fraction of the mixture species on the thermodiffusion process. The separation ratio of the ternary mixture for five different compositions (at 333.15 K and 35 MPa) showed good agreement with experimental data and better accuracy in predicting the sign change of the intermediate component (nC4) as its concentration in the mixture increases, when compared to other MD models.

1.
S.
Srinivasan
and
M. Z.
Saghir
, in
Thermodiffusion in Multicomponent Mixtures: Thermodynamic, Algebraic, and Neuro-Computing Models
(
Springer
,
New York, NY
,
2013
), Chap. 1.
2.
F.
Montel
, “
Phase equilibria needs for petroleum exploration and production industry
,”
Fluid Phase Equilib.
84
,
343
367
(
1993
).
3.
J.
Chan
,
J. J.
Popov
,
S.
Kolisnek-Kehl
, and
D. G.
Leaist
, “
Soret coefficients for aqueous polyethylene glycol solutions and some tests of the segmental model of polymer thermal diffusion
,”
J. Solution Chem.
32
(
3
),
197
214
(
2003
).
4.
S. W.
Kieffer
,
J. J. G.
Glessner
,
P.
Chakraborty
,
C.
Holmden
,
F.
Huang
,
C. E.
Lesher
, and
C. C.
Lundstrom
, “
Isotope fractionation in silicate melts by thermal diffusion
,”
Nature
464
(
7287
),
396
400
(
2010
).
5.
K.
Glavatskiy
,
J. G.
Pharoah
, and
S.
Kjelstrup
, “
Thermal phenomena associated with water transport across a fuel cell membrane: Soret and Dufour effects
,”
J. Membr. Sci.
431
,
96
104
(
2013
).
6.
K.
Liu
, “
Analysis for high-order effects in thermal lagging to thermal responses in biological tissue
,”
Int. J. Heat Mass Transfer
81
,
347
354
(
2015
).
7.
D.
Braun
and
A.
Libchaber
, “
Trapping of DNA by thermophoretic depletion and convection
,”
Phys. Rev. Lett.
89
(
18
),
188103
(
2002
).
8.
A.
Mialdun
,
J.-C.
Legros
,
V.
Yasnou
,
V.
Sechenyh
, and
V.
Shevtsova
, “
Contribution to the benchmark for ternary mixtures: Measurement of the Soret, diffusion and thermodiffusion coefficients in the ternary mixture THN/IBB/nC12 with 0.8/0.1/0.1 mass fractions in ground and orbital laboratories
,”
Eur. Phys. J. E
38
(
4
),
27
(
2015
).
9.
M.
Gebhardt
and
W.
Köhler
, “
Contribution to the benchmark for ternary mixtures: Measurement of the Soret and thermodiffusion coefficients of tetralin+isobutylbenzene+n-dodecane at a composition of (0.8/0.1/0.1) mass fractions by two-color optical beam deflection
,”
Eur. Phys. J. E
38
(
4
),
24
(
2015
).
10.
M.
Larrañaga
,
M. M.
Bou-Ali
,
D. A.
de Mezquıa
,
D. A. S.
Rees
,
J. A.
Madariaga
,
C.
Santamaría
, and
J. K.
Platten
, “
Contribution to the benchmark for ternary mixtures: Determination of Soret coefficients by the thermogravitational and the sliding symmetric tubes techniques
,”
Eur. Phys. J. E
38
(
4
),
28
(
2015
).
11.
A.
Ahadi
and
M. Z.
Saghir
, “
Contribution to the benchmark for ternary mixtures: Transient analysis in microgravity conditions
,”
Eur. Phys. J. E
38
(
4
),
25
(
2015
).
12.
Q.
Galand
and
S. V.
Vaerenbergh
, “
Contribution to the benchmark for ternary mixtures: Measurement of diffusion and Soret coefficients of ternary system tetrahydronaphtalene-isobutylbenzene-n-dodecane with mass fractions 80-10-10 at 25°C
,”
Eur. Phys. J. E
38
(
4
),
26
(
2015
).
13.
O. A.
Khlybov
,
I. I.
Ryzhkov
, and
T. P.
Lyubimova
, “
Contribution to the benchmark for ternary mixtures: Measurement of diffusion and Soret coefficients in 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane onboard the ISS
,”
Eur. Phys. J. E
38
(
4
),
29
(
2015
).
14.
M. M.
Bou-Ali
,
A.
Ahadi
,
D.
Alonso de Mezquia
,
Q.
Galand
,
M.
Gebhardt
,
O.
Khlybov
,
W.
Köhler
,
M.
Larrañaga
,
J. C.
Legros
,
T.
Lyubimova
,
A.
Mialdun
,
I.
Ryzhkov
,
M. Z.
Saghir
,
V.
Shevtsova
, and
S.
Van Varenbergh
, “
Benchmark values for the soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction
,”
Eur. Phys. J. E
38
(
4
),
30
(
2015
).
15.
W.
Köhler
and
K. I.
Morozov
, “
The soret effect in liquid mixtures—A review
,”
J. Non-Equilib. Thermodyn.
41
,
151
(
2016
).
16.
M.
Saghir
and
S.
Srinivasan
, “
Measurements on thermodiffusion in ternary hydrocarbon mixtures at high pressure
,”
J. Chem. Phys.
131
(
12
),
124508
(
2009
).
17.
S.
Srinivasan
and
M. Z.
Saghir
, “
Thermodiffusion in ternary hydrocarbon mixtures. Part 1: n-dodecane/isobutylbenzene/tetralin
,”
J. Non-Equilib. Thermodyn.
36
(
3
),
243
(
2011
).
18.
S.
Srinivasan
and
M. Z.
Saghir
, “
Thermodiffusion of ternary hydrocarbon mixtures. Part 2: n-decane/isobutylbenzene/tetralin
,”
J. Non-Equilib. Thermodyn.
37
(
1
),
99
113
(
2012
).
19.
S.
Srinivasan
and
M. Z.
Saghir
, “
Significance of equation of state and viscosity on the thermodiffusion coefficients of a ternary hydrocarbon mixture
,”
High Temp. - High Pressures
39
,
65
81
(
2010
).
20.
M.
Eslamian
and
M.
Ziad Saghir
, “
Dynamic thermodiffusion theory for ternary liquid mixtures
,”
J. Non-Equilib. Thermodyn.
35
(
1
),
51
73
(
2010
).
21.
M.
Eslamian
,
M. Z.
Saghir
, and
M. M.
Bou-Ali
, “
Investigation of the soret effect in binary, ternary and quaternary hydrocarbon mixtures: New expressions for thermodiffusion factors in quaternary mixtures
,”
Int. J. Therm. Sci.
49
(
11
),
2128
2137
(
2010
).
22.
P.
Artola
,
B.
Rousseau
, and
G.
Galliéro
, “
A new model for thermal diffusion: Kinetic approach
,”
J. Am. Chem. Soc.
130
(
33
),
10963
10969
(
2008
).
23.
M.
Eslamian
and
M. Z.
Saghir
, “
A critical review of thermodiffusion models: Role and significance of the heat of transport and the activation energy of viscous flow
,”
J. Non-Equilib. Thermodyn.
34
(
2
),
97
(
2009
).
24.
A.
Perronace
,
C.
Leppla
,
F.
Leroy
,
B.
Rousseau
, and
S.
Wiegand
, “
Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane–n-decane mixtures
,”
J. Phys. Chem.
116
(
9
),
3718
3729
(
2002
).
25.
G.
Galliero
,
H.
Bataller
,
J.
Bazile
,
J.
Diaz
,
F.
Croccolo
,
H.
Hoang
, and
O.
Minster
, “
Thermodiffusion in multicomponent n-alkane mixtures
,”
NPJ Microgravity
3
,
1
(
2017
).
26.
G.
Galliéro
,
B.
Duguay
,
J.
Caltagirone
, and
F.
Montel
, “
On thermal diffusion in binary and ternary Lennard-Jones mixtures by non-equilibrium molecular dynamics
,”
Philos. Mag.
83
(
17-18
),
2097
2108
(
2003
).
27.
S. H.
Mozaffari
,
S.
Srinivasan
, and
M. Z.
Saghir
, “
Thermodiffusion in binary and ternary hydrocarbon mixtures studied using a modified heat exchange algorithm
,”
Therm. Sci. Eng. Prog.
4
,
168
174
(
2017
).
28.
P.
Wirnsberger
,
D.
Frenkel
, and
C.
Dellago
, “
An enhanced version of the heat exchange algorithm with excellent energy conservation properties
,”
J. Phys. Chem.
143
(
12
),
124104
(
2015
).
29.
G.
Galliero
,
S.
Srinivasan
, and
M. Z.
Saghir
, “
Estimation of thermodiffusion in ternary alkane mixtures using molecular dynamics simulations and an irreversible thermodynamic theory
,”
High Temp. - High Pressures
38
,
315
328
(
2010
).
30.
P.
Artola
and
B.
Rousseau
, “
Isotopic Soret effect in ternary mixtures: Theoretical predictions and molecular simulations
,”
J. Chem. Phys.
143
(
17
),
174503
(
2015
).
31.
M.
Touzet
,
G.
Galliero
,
V.
Lazzeri
,
M. Z.
Saghir
,
F.
Montel
, and
J.
Legros
, “
Thermodiffusion: From microgravity experiments to the initial state of petroleum reservoirs
,”
C. R.-Méc.
339
(
5
),
318
323
(
2011
).
32.
J.
Ewen
,
C.
Gattinoni
,
F.
Thakkar
,
N.
Morgan
,
H.
Spikes
, and
D.
Dini
, “
A comparison of classical force-fields for molecular dynamics simulations of lubricants
,”
Materials
9
(
8
),
651
(
2016
).
33.
H.
Hoang
,
S.
Delage-Santacreu
, and
G.
Galliero
, “
Simultaneous description of equilibrium, interfacial, and transport properties of fluids using a Mie Chain coarse-grained
,”
Ind. Eng. Chem. Res.
56
(
32
),
9213
9226
(
2017
).
34.
Z. A.
Makrodimitri
,
D. J. M.
Unruh
, and
I. G.
Economou
,
J. Phys. Chem. B
115
(
6
),
1429
(
2011
).
35.
Z. A.
Makrodimitri
,
D. J. M.
Unruh
, and
I. G.
Economou
,
Phys. Chem. Chem. Phys.
14
,
4133
(
2012
).
36.
D. K.
Dysthe
,
A. H.
Fuchs
, and
B.
Rousseau
, “
Fluid transport properties by equilibrium molecular dynamics. III. Evaluation of united atom interaction potential models for pure alkanes
,”
J. Chem. Phys.
112
(
17
),
7581
7590
(
2000
).
37.
S.
Antoun
,
M. Z.
Saghir
, and
S.
Srinivasan
, “
An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures
,”
J. Chem. Phys.
148
(
10
),
104507
(
2018
).
38.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
(
13
),
2157
2164
(
2009
).
39.
A.
Jewett
and
J.
Lambert
, Moltemplate,
2015
.
40.
S.
Plimpton
,
P.
Crozier
, and
A.
Thompson
,
LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator
(
Sandia National Laboratories
,
2007
), Vol. 18.
41.
M.
Zhang
and
F.
Müller-Plathe
, “
Reverse nonequilibrium molecular-dynamics calculation of the Soret coefficient in liquid benzene/cyclohexane mixtures
,”
J. Phys. Chem.
123
(
12
),
124502
(
2005
).
42.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1987
).
43.
S.
Kjelstrup
,
D.
Bedeaux
,
I.
Inzoli
, and
J. M.
Simon
, “
Criteria for validity of thermodynamic equations from non-equilibrium molecular dynamics simulations
,”
Energy
33
(
8
),
1185
1196
(
2008
).
44.
S. B.
Anders
, “
The national institute of standards and technology
,”
CPA J.
86
(
5
),
72
(
2016
).
45.
S.
Pokharel
,
N.
Aryal
,
B. R.
Niraula
,
A.
Subedi
, and
N. P.
Adhikari
, “
Transport properties of methane, ethane, propane, and n-butane in water
,”
J. Phys. Commun.
2
,
065003
(
2017
).
46.
M.
Helbæk
,
B.
Hafskjold
,
D. K.
Dysthe
, and
G. H.
Sørland
, “
Self-diffusion coefficients of methane or ethane mixtures with hydrocarbons at high pressure by NMR
,”
J. Chem. Eng. Data
41
(
3
),
598
603
(
1996
).
47.
D. E.
Freed
, “
Temperature and pressure dependence of the diffusion coefficients and NMR relaxation times of mixtures of alkanes
,”
J. Phys. Chem. B
113
(
13
),
4293
4302
(
2009
).
48.
P. R.
Bevington
and
D. K.
Robinson
,
Data Reduction and Error Analysis
(
McGraw-Hill
,
2003
).
49.
S.
Hartmann
,
G.
Wittko
,
W.
Köhler
,
K. I.
Morozov
,
K.
Albers
, and
G.
Sadowski
, “
Thermophobicity of liquids: Heats of transport in mixtures as pure component properties
,”
Phys. Rev. Lett.
109
(
6
),
065901
(
2012
).

Supplementary Material

You do not currently have access to this content.