Exploiting locality in the electron correlation reduces the computational cost for solving the Coupled-Cluster (CC) equations. This is important for making CC theory applicable to routine computational chemistry applications where it promises to deliver results of “gold-standard” quality. Recently, we have proposed a series of CC formulations in the domain-based local pair-natural orbital framework [DLPNO-coupled-cluster with singles and doubles (CCSD) and DLPNO-coupled-cluster singles and doubles with perturbative triples] which are designed to reproduce approximately 99.9% of the canonical correlation energy. In our previous work, the DLPNO-CCSD method has been extended to the high-spin open-shell reference and shown to possess comparable accuracy to the closed-shell counterpart [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)]. The so-called Λ-equations have been formulated in the DLPNO framework for the closed-shell species as an exact derivative of the DLPNO-CCSD Lagrangian with respect to the PNO-based cluster amplitudes [D. Datta et al., J. Chem. Phys. 145, 114101 (2016)]. In this paper, we extend the DLPNO-based Lagrangian scheme to the high-spin open-shell reference cases, thus enabling the accurate computation of the electron- and spin-densities for large open-shell species. We apply this newly developed approach to various first-order electronic and magnetic properties such as isotropic and anisotropic components in the hyperfine coupling interactions and the electric field gradient. We demonstrate that the DLPNO-CCSD results converge toward the respective canonical CC density and also that the DLPNO-CCSD-based properties are more accurate than the conventional density functional theory (DFT) results in real-life applications. The additional computational cost is not more than one energy evaluation in the DLPNO-CCSD framework.

1.
R.
Improta
and
V.
Barone
,
Chem. Rev.
104
,
1231
(
2004
).
2.
F.
Neese
, “
Quantum chemistry and EPR parameters
,” in
eMagRes
(
John Wiley & Sons, Ltd.
,
2017
).
3.
M.
Munzarová
and
B.
Engels
, in
Calculation of NMR and EPR Parameters: Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
).
4.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
6.
J.
Čížek
and
J.
Paldus
,
Phys. Scr.
21
,
251
(
1980
).
7.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
8.
G.
Purvis
and
R.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
9.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
10.
D.
Feller
and
E. R.
Davidson
,
Theor. Chim. Acta
68
,
57
(
1985
).
11.
I.
Carmichael
,
J. Phys. Chem.
94
,
5734
(
1990
).
12.
S. A.
Perera
,
L. M.
Salemi
, and
R. J.
Bartlett
,
J. Chem. Phys.
106
,
4061
(
1997
).
13.
S. A.
Perera
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
100
,
1425
(
1994
).
14.
C.
Puzzarini
and
V.
Barone
,
J. Chem. Phys.
133
,
184301
(
2010
).
15.
C.
Puzzarini
and
V.
Barone
,
J. Chem. Phys.
129
,
084306
(
2008
).
16.
M.
Munzarová
and
M.
Kaupp
,
J. Phys. Chem. A
103
,
9966
(
1999
).
17.
J.
Gauss
and
D.
Cremer
,
Chem. Phys. Lett.
150
,
280
(
1988
).
18.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
19.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
20.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2623
(
1991
).
21.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
200
,
1
(
1992
).
22.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
23.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
).
24.
P. G.
Szalay
,
Int. J. Quantum Chem.
55
,
151
(
1995
).
25.
H. J.
Monkhorst
,
Int. J. Quantum Chem.
12
,
421
(
2009
).
26.
L.
Adamowicz
,
W. D.
Laidig
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
26
,
245
(
1984
).
27.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
28.
H.
Koch
,
H. J. A.
Jansen
,
T.
Helgaker
, and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3345
(
1990
).
29.
H.
Sekino
and
R. J.
Bartlett
,
Int. J. Quantum Chem.
26
,
255
(
1984
).
30.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).
31.
S.
Hirata
,
J. Chem. Phys.
121
,
51
(
2004
).
33.
34.
D.
Ganyushin
and
F.
Neese
,
J. Chem. Phys.
138
,
104113
(
2013
).
35.
T.
Shiozaki
and
T.
Yanai
,
J. Chem. Theory Comput.
12
,
4347
(
2016
).
36.
T. N.
Lan
,
J.
Chalupský
, and
T.
Yanai
,
Mol. Phys.
113
,
1750
(
2015
).
37.
T.
Nguyen Lan
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Theory Comput.
11
,
73
(
2015
).
38.
T. N.
Lan
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Theory Comput.
10
,
1953
(
2014
).
39.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
40.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
41.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
42.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
43.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
44.
P.
Pinski
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
143
,
034108
(
2015
).
45.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
024109
(
2016
).
46.
M.
Saitow
,
U.
Becker
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
146
,
164105
(
2017
).
47.
48.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
49.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
50.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
51.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
52.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
53.
M.
Schütz
and
H.-J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
54.
T.
Korona
and
H.-J.
Werner
,
J. Chem. Phys.
118
,
3006
(
2003
).
55.
H.-J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
56.
J.
Yang
,
G. K.
Chan
,
F. R.
Manby
,
M.
Schütz
, and
H. J.
Werner
,
J. Chem. Phys.
136
,
144105
(
2012
).
57.
M.
Schütz
,
J.
Yang
,
G. K.
Chan
,
F. R.
Manby
, and
H.-J.
Werner
,
J. Chem. Phys.
138
,
054109
(
2013
).
58.
H.-J.
Werner
,
G.
Knizia
,
C.
Krause
,
M.
Schwilk
, and
M.
Dornbach
,
J. Chem. Theory Comput.
11
,
484
(
2015
).
59.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
3650
(
2017
).
60.
D. P.
Tew
,
B.
Helmich
, and
C.
Hättig
,
J. Chem. Phys.
135
,
074107
(
2011
).
61.
G.
Schmitz
,
C.
Hättig
, and
D. P.
Tew
,
Phys. Chem. Chem. Phys.
16
,
22167
(
2014
).
62.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
135
,
214106
(
2011
).
63.
B.
Helmich
and
C.
Hättig
,
J. Chem. Phys.
139
,
084114
(
2013
).
64.
D. P.
Tew
and
C.
Hättig
,
Int. J. Quantum Chem.
113
,
224
(
2013
).
65.
G.
Schmitz
and
C.
Hättig
,
J. Chem. Phys.
145
,
234107
(
2016
).
66.
M. S.
Frank
,
G.
Schmitz
, and
C.
Hättig
,
Mol. Phys.
115
,
343
(
2017
).
67.
G.
Schmitz
,
B.
Helmich
, and
C.
Hättig
,
Mol. Phys.
111
,
2463
(
2013
).
68.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
).
69.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
70.
Y.
Kurashige
,
J.
Yang
,
G. K.-L.
Chan
, and
F. R.
Manby
,
J. Chem. Phys.
136
,
124106
(
2012
).
71.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K. L.
Chan
,
J. Chem. Phys.
134
,
044123
(
2011
).
72.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
73.
P. R.
Nagy
and
M.
Kállay
,
J. Chem. Phys.
146
,
214106
(
2017
).
74.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
75.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
120
,
6832
(
2004
).
77.
J.
Friedrich
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
126
,
154110
(
2007
).
78.
I.-M.
Høyvik
,
K.
Kristensen
,
B.
Jansik
, and
P.
Jørgensen
,
J. Chem. Phys.
136
,
014105
(
2012
).
79.
K.
Kristensen
,
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
7
,
1677
(
2011
).
80.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
125
,
104106
(
2006
).
81.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
127
,
064107
(
2007
).
82.
K.
Freundorfer
,
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
133
,
244110
(
2010
).
83.
G.
Wälz
,
D.
Usvyat
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
144
,
084117
(
2016
).
84.
T.
Crawford
and
R. A.
King
,
Chem. Phys. Lett.
366
,
611
(
2002
).
85.
N. J.
Russ
and
T. D.
Crawford
,
Chem. Phys. Lett.
400
,
104
(
2004
).
86.
H. R.
McAlexander
,
T. J.
Mach
, and
T. D.
Crawford
,
Phys. Chem. Chem. Phys.
14
,
7830
(
2012
).
87.
H. R.
McAlexander
and
T. D.
Crawford
,
J. Chem. Theory Comput.
12
,
209
(
2016
).
88.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
, (
1993
).
89.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A
114
,
6721
(
2010
).https://pubs.acs.org/doi/abs/10.1021/jp1038738
90.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A
114
,
8644
(
2010
).
91.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
131
,
114108
(
2009
).
92.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
93.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
94.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
).
95.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J. P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
96.
C.
Angeli
,
R.
Cimiraglia
, and
J.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
97.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
98.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1992
).
99.
D.
Datta
,
S.
Kossmann
, and
F.
Neese
,
J. Chem. Phys.
145
,
114101
(
2016
).
100.
G. L.
Stoychev
,
A. A.
Auer
, and
F.
Neese
,
J. Chem. Theory Comput.
13
,
554
(
2017
).
101.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
102.
E.
Baerends
,
D.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
103.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
104.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
105.
G.
Bistoni
,
C.
Riplinger
,
Y.
Minenkov
,
L.
Cavallo
,
A. A.
Auer
, and
F.
Neese
,
J. Chem. Theory Comput.
13
,
3220
(
2017
).
106.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
107.
J. T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
108.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
109.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
110.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
111.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
112.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
113.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
13126
(
2006
).
114.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chim. Acta
120
,
215
(
2008
).
115.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
116.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
117.
F.
Neese
,
T.
Schwabe
, and
S.
Grimme
,
J. Chem. Phys.
126
,
124115
(
2007
).
118.
R. K.
Nesbet
,
Phys. Rev.
109
,
1632
(
1958
).
119.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
120.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
121.
A. A.
Auer
and
J.
Gauss
,
Special Issue: “Moving frontiers in quantum chemistry
,”
Chem. Phys.
356
,
7
(
2009
).
122.
S.
Sinnecker
,
E.
Reijerse
,
F.
Neese
, and
W.
Lubitz
,
J. Am. Chem. Soc.
126
,
3280
(
2004
).
123.
O.
Burghaus
,
M.
Plato
,
M.
Rohrer
,
K.
Moebius
,
F.
MacMillan
, and
W.
Lubitz
,
J. Phys. Chem.
97
,
7639
(
1993
).
124.
M.
Flores
,
R.
Isaacson
,
R.
Calvo
,
G.
Feher
, and
W.
Lubitz
,
Special Issue: “Structure-mechanism in photosynthesis dedicated to the memory of Professor Arnold Jan Hoff
,”
Chem. Phys.
294
,
401
(
2003
).
125.
F.
Neese
,
J. Chem. Phys.
118
,
3939
(
2003
).
126.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
127.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
128.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
129.
V.
Barone
and
M.
Cossi
,
J. Phys. Chem. A
102
,
1995
(
1998
).
130.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2003
).
131.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
132.
C.
van Wüllen
,
J. Chem. Phys.
109
,
392
(
1998
).
133.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
134.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
135.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
2037
(
2004
).
136.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
137.
A.
Wolf
and
M.
Reiher
,
J. Chem. Phys.
124
,
064102
(
2006
).
138.
R.
Mastalerz
,
R.
Lindh
, and
M.
Reiher
,
Chem. Phys. Lett.
465
,
157
(
2008
).
139.
E.
Malkin
,
I.
Malkin
,
O.
Malkina
,
V.
G Malkin
, and
M.
Kaupp
,
Phys. Chem. Chem. Phys.
8
,
4079
(
2006
).
140.
B.
Sandhoefer
,
S.
Kossmann
, and
F.
Neese
,
J. Chem. Phys.
138
,
104102
(
2013
).
141.
L.
Visscher
and
K.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
142.
J.
Gauss
,
M.
Kállay
, and
F.
Neese
,
J. Phys. Chem. A
113
,
11541
(
2009
).
143.
F.
Neese
and
E. I.
Solomon
, “
Interpretation and calculation of Spin-Hamiltonian parameters in transition metal complexes
,” in
Magnetism: Molecules to Materials
(
Wiley-VCH Verlag GmbH
,
2003
), pp.
345
466
.
144.
F.
Neese
,
J. Chem. Phys.
115
,
11080
(
2001
).
145.
S.
Patchkovskii
and
T.
Ziegler
,
J. Chem. Phys.
111
,
5730
(
1999
).
146.
O. L.
Malkina
,
J.
Vaara
,
B.
Schimmelpfennig
,
M.
Munzarová
,
V. G.
Malkin
, and
M.
Kaupp
,
J. Am. Chem. Soc.
122
,
9206
(
2000
).
147.
F.
Neese
,
Int. J. Quantum Chem.
83
,
104
(
2001
).

Supplementary Material

You do not currently have access to this content.