The adsorption of Zr on the CeO2 surfaces can lead to the formation of ZrO2-like structures, which can play a crucial role in the catalytic properties of CexZr1−xO2 as support for transition-metal catalysts; however, our atomistic understanding is far from satisfactory, and hence, it affects our capacity to engineer the combination of ZrO2–CeO2 for catalysis applications. Here, we investigate the adsorption of Zrn (n = 1 − 4) atoms on CeO2(111) surfaces through density functional theory with the Hubbard model and bring new insights into the Zr–CeO2 interaction and the formation of ZrO2-like structures on ceria. We found that the Zr atoms oxidize to Zr4+ and strongly interact with the O2− anions, reducing the surface Ce4+ cations to Ce3+ (4 Ce atoms per Zr adatom), which stabilizes the system by more than 10 eV per Zr. As more Zr is adsorbed, the O2− species migrate from the sub-surface to interact with the on-surface Zr adatoms in hcp sites, producing a full ZrO2-like monolayer, which contributes to reduce the strain induced by the increased size of the Ce3+ cations compared with Ce4+. The simulated partial and full ZrO2-like structure thicknesses agree with the experimental measurements. In addition, we found an unprecedented trend for the on-surface Zr atoms: our calculations show that they are less stable than Zr replacing Ce3+ atoms from the first cation layer. Therefore, under sufficiently high temperatures, one expects the formation of a Ce2O3-like/c-ZrO2/CeO2 structure, which may completely change the reactivity of the surface.

1.
T.
Montini
,
M.
Melchionna
,
M.
Monai
, and
P.
Fornasiero
, “
Fundamentals and catalytic applications of CeO2-based materials
,”
Chem. Rev.
116
,
5987
6041
(
2016
).
2.
E.
Mamontov
,
T.
Egami
,
R.
Brezny
,
M.
Koranne
, and
S.
Tyagi
, “
Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia
,”
J. Phys. Chem. B
104
,
11110
11116
(
2000
).
3.
M. V.
Ganduglia-Pirovano
,
J. L. F.
Da Silva
, and
J.
Sauer
, “
Density functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111)
,”
Phys. Rev. Lett.
102
,
026101
(
2009
).
4.
J.
Paier
,
C.
Penschke
, and
J.
Sauer
, “
Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment
,”
Chem. Rev.
113
,
3949
3985
(
2013
).
5.
Z.
Hu
and
H.
Metiu
, “
Effect of dopants on the energy of oxygen-vacancy formation at the surface of ceria: Local or global?
,”
J. Phys. Chem. C
115
,
17898
17909
(
2011
).
6.
Z.
Yang
,
Z.
Fu
,
Y.
Zhang
, and
R.
Wu
, “
Direct CO oxidation by lattice oxygen on Zr-doped ceria surfaces
,”
Catal. Lett.
141
,
78
82
(
2011
).
7.
M.
Shane
and
M. L.
Mecartney
, “
Sol-gel synthesis of zirconia barrier coatings
,”
J. Mater. Sci.
25
,
1537
1544
(
1990
).
8.
J.
Park
,
Y.
Lee
,
I.
Chang
,
G. Y.
Cho
,
S.
Ji
,
W.
Lee
, and
S. W.
Cha
, “
Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells
,”
Energy
116
,
170
176
(
2016
).
9.
I.
Kosacki
,
T.
Suzuki
,
V.
Petrovsky
, and
H. U.
Anderson
, “
Electrical conductivity of nanocrystalline ceria and zirconia thin films
,”
Solid State Ionics
136
,
1225
1233
(
2000
).
10.
G.
Dutta
,
U. V.
Waghmare
,
T.
Baidya
,
M. S.
Hegde
,
K. R.
Priolkar
, and
P. R.
Sarode
, “
Reducibility of Ce1−xZrxO2: Origin of enhanced oxygen storage capacity
,”
Catal. Lett.
108
,
165
172
(
2006
).
11.
S.
Hu
,
W.
Wang
,
Y.
Wang
,
Q.
Xu
, and
J.
Zhu
, “
Interaction of Zr with CeO2(111) thin film and its influence on supported Ag nanoparticles
,”
J. Phys. Chem. C
119
,
18257
18266
(
2015
).
12.
K.
Meinel
,
A.
Eichler
,
K. M.
Schindler
, and
H.
Neddermeyer
, “
STM, Leed, and DFT characterization of epitaxial ZrO2 films on Pt(111)
,”
Surf. Sci.
562
,
204
218
(
2004
).
13.
W.
Wang
,
S.
Hu
,
Y.
Han
,
X.
Pan
,
Q.
Xu
, and
J.
Zhu
, “
Interaction of Zr with oxidized and partially reduced ceria thin films
,”
Surf. Sci.
653
,
205
210
(
2016
).
14.
M. J.
Piotrowski
,
P.
Tereshchuk
, and
J. L. F.
Da Silva
, “
Theoretical investigation of small transition-metal clusters supported on the CeO2(111) surface
,”
J. Phys. Chem. C
188
,
21438
21446
(
2014
).
15.
P.
Tereshchuk
,
R. L. H.
Freire
,
C. G.
Ungureanu
,
Y.
Seminovski
,
A.
Kiejna
, and
J. L. F.
Da Silva
, “
The role of charge transfer in the oxidation state change of Ce atoms in the TM13-CeO2(111) systems (TM = Pd, Ag, Pt, Au): A DFT+U investigation
,”
Phys. Chem. Chem. Phys.
17
,
13520
13530
(
2015
).
16.
E. L.
Wilson
,
R.
Grau-Crespo
,
C. L.
Pang
,
G.
Cabailh
,
Q.
Chen
,
J. A.
Purton
,
C. R. A.
Catlow
,
W. A.
Brown
,
N. H.
de Leeuw
, and
G.
Thornton
, “
Redox behavior of the model catalyst Pd/CeO2−x/Pt(111)
,”
J. Phys. Chem. C
112
,
10918
10922
(
2008
).
17.
P.
Luches
,
F.
Pagliuca
,
S.
Valeri
,
F.
Illas
,
G.
Preda
, and
G.
Pacchioni
, “
Nature of Ag islands and nanoparticles on the CeO2(111) surface
,”
J. Phys. Chem. C
116
,
1122
1132
(
2012
).
18.
A.
Bruix
,
K. M.
Neyman
, and
F.
Illas
, “
Adsorption, oxidation state, and diffusion of Pt atoms on the CeO2(111) surface
,”
J. Phys. Chem. C
114
,
14202
14207
(
2010
).
19.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
20.
J. L. F.
Da Silva
,
M. V.
Ganduglia-Pirovano
,
J.
Sauer
,
V.
Bayer
, and
G.
Kresse
, “
Hybrid functionals applied to rare-earth oxides: The example of ceria
,”
Phys. Rev. B
75
,
045121
(
2007
).
21.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
22.
S.
Fabris
,
G.
Vicario
,
G.
Balducci
,
S.
de Gironcoli
, and
S.
Baroni
, “
Electronic and atomistic structures of clean and reduced ceria surfaces
,”
J. Phys. Chem. B
109
,
22860
22867
(
2005
).
23.
D. A.
Andersson
,
S. I.
Simak
,
B.
Johansson
,
I. A.
Abrikosov
, and
N. V.
Skorodumova
, “
Modeling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism
,”
Phys. Rev. B
75
,
035109
(
2007
).
24.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
25.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
13118
(
1993
).
26.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
27.
T.
Takeda
, “
The scalar relativistic approximation
,”
Z. Phys. B: Condens. Matter Quanta
32
,
43
48
(
1978
).
28.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
, “
The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules
,”
J. Chem. Phys.
105
,
6505
6516
(
1996
).
29.
J.
Neugebauer
and
M.
Scheffler
, “
Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111)
,”
Phys. Rev. B
46
,
16067
16080
(
1992
).
30.
G. G.
Rondina
and
J. L. F.
Da Silva
, “
Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles
,”
J. Chem. Inf. Model.
53
,
2282
2298
(
2013
).
31.
M.
Baron
,
H.
Abbott
,
O.
Bondarchuk
,
D.
Stacchiola
,
A.
Uhl
,
S.
Shaikhutdinov
,
H.-J.
Freund
,
C.
Popa
,
M. V.
Ganduglia-Pirovano
, and
J.
Sauer
, “
Resolving the atomic structure of Vanadia monolayer catalysts: Monomers, trimers, and oligomers on ceria
,”
Angew. Chem.
48
,
8006
8009
(
2009
).
32.
D.
Wang
,
Y.
Guo
,
K.
Liang
, and
K.
Tao
, “
Crystal structure of zirconia by rietveld refinement
,”
Sci. China Ser. A Math.
42
,
80
86
(
1999
).
33.
M.
Yashima
,
S.
Kobayashi
, and
T.
Yasui
, “
Crystal structure and the structural disorder of ceria from 40 to 1497° C
,”
Solid State Ionics
177
,
211
215
(
2006
).
34.
M.
Gasgnier
,
G.
Schiffmacher
,
P.
Caro
, and
L.
Eyring
, “
The formation of rare earth oxides far from equilibrium
,”
J. Less Common Metals
116
,
31
42
(
1986
).
35.
A.
Pierre
and
T.
Jean-Pierre
, “
Structure and ionic mobility of zirconia at high temperature
,”
J. Am. Ceram. Soc.
68
,
34
40
(
1985
).
36.
A.
Gualtieri
,
P.
Norby
,
J.
Hanson
, and
J.
Hriljac
, “
Rietveld refinement using synchrotron x-ray powder diffraction data collected in transmission geometry using an imaging-plate detector: Application to standard m-ZrO2
,”
J. Appl. Cryst.
29
,
707
713
(
1996
).
37.
R. D.
Shannon
, “
Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
,”
Acta Cryst. A
32
,
751
767
(
1976
).
38.
R.
Hoppe
, “
The coordination number—An ‘inorganic chameleon
,’”
Angew. Chem., Int. Ed.
9
,
25
34
(
1970
).
39.
R.
Hoppe
, “
Effective coordination numbers (ECoN) and mean active fictive ionic radii (MEFIR)
,”
Z. Kristallogr.
150
,
23
52
(
1979
).
40.
J. L. F.
Da Silva
, “
Effective coordination concept applied for phase change (GeTe)m(Sb2Te3)n compounds
,”
J. Appl. Phys.
109
,
023502
(
2011
).
41.
H.
Nörenberg
and
G. A. D.
Briggs
, “
Defect formation on CeO2(111) surfaces after annealing studied by STM
,”
Surf. Sci.
424
,
L352
L355
(
1999
).

Supplementary Material

You do not currently have access to this content.