The internal-axis system (IAS) of molecules with a large amplitude internal motion (LAM) is determined by integrating the kinematic equation of the IAS by Lie-group and Lie-algebraic methods. Numerical examples on hydrogen peroxide, nitrous acid, and acetaldehyde demonstrate the methods. By exploiting the special product structure of the solution matrix, simple methods are devised for calculating the transformation to the rho-axis system (RAS) along with the value of the parameter ρ characterizing a RAS rotational-LAM kinetic energy operator. The parameter ρ so calculated agrees exactly with that one obtained by the Floquet method as shown in the example of acetaldehyde. Geometrical interpretation of ρ is given. The advantageous property of the RAS over the IAS in retaining simple periodic boundary conditions is numerically demonstrated.

1.
H.
Longuet-Higgins
, “
The symmetry groups of non-rigid molecules
,”
Mol. Phys.
6
(
5
),
445
460
(
1963
).
2.
J. T.
Hougen
, “
Strategies for advanced applications of permutation–inversion groups to the microwave spectra of molecules with large amplitude motions
,”
J. Mol. Spectrosc.
256
(
2
),
170
185
(
2009
).
3.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
2006
).
4.
Y. G.
Smeyers
, “
Introduction to group theory for non-rigid molecules
,”
Advances in Quantum Chemistry
(
Elsevier
,
1992
), Vol. 24, pp.
1
77
.
5.
G. S.
Ezra
,
Symmetry Properties of Molecules
(
Springer Science & Business Media
,
2012
), Vol. 28.
6.
H.
Schmiedt
,
Molecular Symmetry, Super-Rotation, and Semi-Classical Motion
(
Springer
,
2017
).
7.
H. H.
Nielsen
, “
The torsion oscillator-rotator in the quantum mechanics
,”
Phys. Rev.
40
(
3
),
445
456
(
1932
).
8.
K. S.
Pitzer
, “
Energy levels and thermodynamic functions for molecules with internal rotation. II. Unsymmetrical tops attached to a rigid frame
,”
J. Chem. Phys.
14
(
4
),
239
243
(
1946
).
9.
E.
Mason
and
M.
Kreevoy
, “
A simple model for barriers to internal rotation
,”
J. Am. Chem. Soc.
77
(
22
),
5808
5814
(
1955
).
10.
K. T.
Hecht
and
D. M.
Dennison
, “
Hindered rotation in molecules with relatively high potential barriers
,”
J. Chem. Phys.
26
(
1
),
31
47
(
1957
).
11.
L.
Pauling
, “
The nature of bond orbitals and the origin of potential barriers to internal rotation in molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
44
(
2
),
211
216
(
1958
).
12.
C. C.
Lin
and
J. D.
Swalen
, “
Internal rotation and microwave spectroscopy
,”
Rev. Mod. Phys.
31
(
4
),
841
892
(
1959
).
13.
C.
Quade
and
C. C.
Lin
, “
Internal rotation in completely asymmetric molecules. I. A general theory and analysis of the microwave rotational spectrum of CH2DCOH, CD2HCOH, and CHOOCH2D
,”
J. Chem. Phys.
38
(
2
),
540
550
(
1963
).
14.
J. T.
Hougen
,
P.
Bunker
, and
J.
Johns
, “
The vibration-rotation problem in triatomic molecules allowing for a large-amplitude bending vibration
,”
J. Mol. Spectrosc.
34
(
1
),
136
172
(
1970
).
15.
H. L.
Strauss
and
H. M.
Pickett
, “
Conformational structure, energy, and inversion rates of cyclohexane and some related oxanes
,”
J. Am. Chem. Soc.
92
(
25
),
7281
7290
(
1970
).
16.
D.
Moule
and
C. V. R.
Rao
, “
Vibration-rotation-inversion Hamiltonian of formaldehyde
,”
J. Mol. Spectrosc.
45
(
1
),
120
141
(
1973
).
17.
D.
Papoušek
,
J.
Stone
, and
V.
Špirko
, “
Vibration-inversion-rotation spectra of ammonia. a vibration-inversion-rotation Hamiltonian for NH3
,”
J. Mol. Spectrosc.
48
(
1
),
17
37
(
1973
).
18.
C. F.
Hansen
,
B.
Henderson
, and
W. E.
Pearson
, “
Effects of curvilinear motion in large-amplitude bending of C3
,”
J. Chem. Phys.
60
(
3
),
754
759
(
1974
).
19.
J. M.
Stone
, “
The large amplitude motion-rotation Hamiltonian for tetratomic molecules, application to HCNO and HNCO
,”
J. Mol. Spectrosc.
54
(
1
),
1
9
(
1975
).
20.
P.
Russegger
and
J.
Brickmann
, “
Quantum states of intramolecular nuclear motion with large amplitudes: Pseudorotation of trigonal bipyramidal molecules
,”
J. Chem. Phys.
62
(
3
),
1086
1093
(
1975
).
21.
D.
Papoušek
and
V.
Špirko
, “
A new theoretical look at the inversion problem in molecules
,”
Topics in Current Chemistry
(
Springer
,
1976
), Vol. 68, pp.
59
102
.
22.
C. R.
Quade
, “
The interaction of a large amplitude internal motion with other vibrations in molecules. The effective Hamiltonian for the large amplitude motion
,”
J. Chem. Phys.
65
(
2
),
700
705
(
1976
).
23.
D. G.
Lister
,
J. N.
Macdonald
, and
N. L.
Owen
,
Internal Rotation and Inversion: An Introduction to Large Amplitude Motions in Molecules
(
Academic Press
,
1978
).
24.
D.
Papoušek
, “
The story of the ammonia molecule: Ten years of investigation of molecular inversion
,”
J. Mol. Struct.
100
,
179
198
(
1983
).
25.
P.
Jensen
, “
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
,”
Comput. Phys. Rep.
1
(
1
),
1
55
(
1983
).
26.
V.
Špirko
, “
Vibrational anharmonicity and the inversion potential function of NH3
,”
J. Mol. Spectrosc.
101
(
1
),
30
47
(
1983
).
27.
H. L.
Strauss
, “
Pseudorotation: A large amplitude molecular motion
,”
Annu. Rev. Phys. Chem.
34
(
1
),
301
328
(
1983
).
28.
V.
Szalay
, “
Further extension of the Hougen −Bunker−Johns model
,”
J. Mol. Spectrosc.
102
(
1
),
13
32
(
1983
).
29.
V.
Szalay
, “
On the separation of the large-and small-amplitude internal motions of a molecule
,”
J. Mol. Spectrosc.
110
(
1
),
172
173
(
1985
).
30.
M.
Rodler
,
R.
Brown
,
P.
Godfrey
, and
B.
Kleibömer
, “
The rotation-inversion spectrum of ketenimine, H2CCNH
,”
J. Mol. Spectrosc.
118
(
1
),
267
276
(
1986
).
31.
V.
Szalay
,
G.
Bánhegyi
, and
G.
Fogarasi
, “
Determination of an isotope-independent puckering potential function of oxetane
,”
J. Mol. Spectrosc.
126
(
1
),
1
12
(
1987
).
32.
V.
Szalay
, “
Derivation of the nonrigid rotation-large-amplitude internal motion Hamiltonian of the general molecule
,”
J. Mol. Spectrosc.
128
(
1
),
24
61
(
1988
).
33.
M. A.
Mekhtiev
,
P. D.
Godfrey
, and
V.
Szalay
, “
Methanol as a flexible model
,”
J. Mol. Spectrosc.
180
(
1
),
42
53
(
1996
).
34.
J. T.
Hougen
, “
Coordinates, Hamiltonian, and symmetry operations for the small-amplitude vibrational problem in methyl-top internal-rotor molecules like CH3CHO
,”
J. Mol. Spectrosc.
181
(
2
),
287
296
(
1997
).
35.
A. L.
East
and
P.
Bunker
, “
A general rotation–contortion Hamiltonian with structure relaxation: Application to the precessing internal rotor model
,”
J. Mol. Spectrosc.
183
(
1
),
157
162
(
1997
).
36.
H. M.
Pickett
, “
Theoretical studies of internal rotation for an asymmetric top
,”
J. Chem. Phys.
107
(
17
),
6732
6735
(
1997
).
37.
V.
Szalay
,
A. G.
Császár
, and
M. L.
Senent
, “
Symmetry analysis of internal rotation
,”
J. Chem. Phys.
117
(
14
),
6489
6492
(
2002
).
38.
I.
Kleiner
and
J. T.
Hougen
, “
Rho-axis-method Hamiltonian for molecules having one methyl rotor and C1 point-group symmetry at equilibrium
,”
J. Chem. Phys.
119
(
11
),
5505
5509
(
2003
).
39.
P.
Bunker
,
B.
Ostojić
, and
S.
Yurchenko
, “
A theoretical study of the millimeterwave spectrum of CH5+.
,”
J. Mol. Struct.
695
,
253
261
(
2004
).
40.
A. G.
Császár
,
V.
Szalay
, and
M. L.
Senent
, “
Ab initio torsional potential and transition frequencies of acetaldehyde
,”
J. Chem. Phys.
120
,
1203
1207
(
2004
).
41.
W. D.
Allen
,
A.
Bődi
,
V.
Szalay
, and
A. G.
Császár
, “
Adiabatic approximations to internal rotation
,”
J. Chem. Phys.
124
,
224310-1
224310-9
(
2006
).
42.
B. M.
Wong
,
R. L.
Thom
, and
R. W.
Field
, “
Accurate inertias for large-amplitude motions: Improvements on prevailing approximations
,”
J. Phys. Chem. A
110
(
23
),
7406
7413
(
2006
).
43.
I.
Kleiner
, “
Asymmetric-top molecules containing one methyl-like internal rotor: Methods and codes for fitting and predicting spectra
,”
J. Mol. Spectrosc.
260
(
1
),
1
18
(
2010
).
44.
S.-I.
Mizushima
,
Structure of Molecules and Internal Rotation
(
Elsevier
,
2013
).
45.
M.
Biczysko
,
J.
Bloino
, and
C.
Puzzarini
, “
Computational challenges in astrochemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
3
),
e1349
(
2018
).
46.
L.
Goodman
,
V.
Pophristic
, and
F.
Weinhold
, “
Origin of methyl internal rotation barriers
,”
Acc. Chem. Res.
32
(
12
),
983
993
(
1999
).
47.
V.
Pophristic
and
L.
Goodman
, “
Hyperconjugation not steric repulsion leads to the staggered structure of ethane
,”
Nature
411
(
6837
),
565
568
(
2001
).
48.
R. F.
Bader
,
J.
Cheeseman
,
K.
Laidig
,
K.
Wiberg
, and
C.
Breneman
, “
Origin of rotation and inversion barriers
,”
J. Am. Chem. Soc.
112
(
18
),
6530
6536
(
1990
).
49.
S.
Liu
,
N.
Govind
, and
L. G.
Pedersen
, “
Exploring the origin of the internal rotational barrier for molecules with one rotatable dihedral angle
,”
J. Chem. Phys.
129
(
9
),
094104
(
2008
).
50.
S.
Liu
, “
Origin and nature of bond rotation barriers: A unified view
,”
J. Phys. Chem. A
117
(
5
),
962
965
(
2013
).
51.
Y.
Mo
, “
A critical analysis on the rotation barriers in butane
,”
J. Org. Chem.
75
(
8
),
2733
2736
(
2010
).
52.
O.
Asvany
,
K. M.
Yamada
,
S.
Brünken
,
A.
Potapov
, and
S.
Schlemmer
, “
Experimental ground-state combination differences of CH5+.
,”
Science
347
(
6228
),
1346
1349
(
2015
).
53.
P.
Ayotte
,
J. A.
Kelley
,
S. B.
Nielsen
, and
M. A.
Johnson
, “
Vibrational spectroscopy of the F · H2O complex via argon predissociation: Photoinduced, intracluster proton transfer?
,”
Chem. Phys. Lett.
316
(
5-6
),
455
459
(
2000
).
54.
J. K.
Watson
, “
Simplification of the molecular vibration-rotation Hamiltonian
,”
Mol. Phys.
15
(
5
),
479
490
(
1968
).
55.
J.
Pesonen
,
A.
Miani
, and
L.
Halonen
, “
New inversion coordinate for ammonia: Application to a CCSD(T) bidimensional potential energy surface
,”
J. Chem. Phys.
115
(
3
),
1243
1250
(
2001
).
56.
B.
Kirtman
, “
Interactions between ordinary vibrations and hindered internal rotation. I. Rotational energies
,”
J. Chem. Phys.
37
(
11
),
2516
2539
(
1962
).
57.
R.
Lees
and
J.
Baker
, “
Torsion–Vibration–Rotation interactions in methanol. I. Millimeter wave spectrum
,”
J. Chem. Phys.
48
(
12
),
5299
5318
(
1968
).
58.
E.
Herbst
,
J.
Messer
,
F. C.
De Lucia
, and
P.
Helminger
, “
A new analysis and additional measurements of the millimeter and submillimeter spectrum of methanol
,”
J. Mol. Spectrosc.
108
(
1
),
42
57
(
1984
).
59.
J. T.
Hougen
,
I.
Kleiner
, and
M.
Godefroid
, “
Selection rules and intensity calculations for a cs asymmetric top molecule containing a methyl group internal rotor
,”
J. Mol. Spectrosc.
163
(
2
),
559
586
(
1994
).
60.
V.
Szalay
and
J.
Ortigoso
, “
The internal axis system of molecules with one large amplitude internal motion
,”
J. Chem. Phys.
109
(
10
),
3911
3918
(
1998
).
61.
V.
Szalay
,
A. G.
Császár
,
J.
Santos
, and
J.
Ortigoso
, “
Rho-axis-system Hamiltonian for molecules with one large amplitude internal motion
,”
J. Chem. Phys.
118
(
15
),
6801
6805
(
2003
).
62.
J. H.
Shirley
, “
Solution of the schrödinger equation with a Hamiltonian periodic in time
,”
Phys. Rev.
138
,
B979
B987
(
1965
).
63.
C. J.
Budd
and
A.
Iserles
, “
Geometric integration: Numerical solution of differential equations on manifolds
,”
Philos. Trans. R. Soc., A
357
(
1754
),
945
956
(
1999
).
64.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
(
Springer Science & Business Media
,
2006
), Vol. 31.
65.
A.
Iserles
,
H. Z.
Munthe-Kaas
,
S. P.
Nørsett
, and
A.
Zanna
, “
Lie-group methods
,”
Acta Numer.
9
,
215
365
(
2000
).
66.
E.
Celledoni
,
H.
Marthinsen
, and
B.
Owren
, “
An introduction to Lie group integrators - basics, new developments and applications
,”
J. Comput. Phys.
257
,
1040
1061
(
2014
).
67.
S.
Blanes
and
F.
Casas
,
A Concise Introduction to Geometric Numerical Integration
(
Chapman and Hall/CRC
,
2016
).
68.
H.
Munthe-Kaas
, “
Runge-Kutta methods on Lie groups
,”
BIT Numer. Math.
38
(
1
),
92
111
(
1998
).
69.
M.
Rey
,
A.
Nikitin
, and
V. G.
Tyuterev
, “
Ab initio ro-vibrational Hamiltonian in irreducible tensor formalism: A method for computing energy levels from potential energy surfaces for symmetric-top molecules
,”
Mol. Phys.
108
(
16
),
2121
2135
(
2010
).
70.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
, “
Reaction path Hamiltonian for polyatomic molecules
,”
J. Chem. Phys.
72
(
1
),
99
112
(
1980
).
71.
J.
Zhou
,
C.
Ye
, and
B.
Sanctuary
, “
Rotation operator approach to spin dynamics and the Euler geometric equations
,”
J. Chem. Phys.
101
(
8
),
6424
6429
(
1994
).
72.
E.
Wilson
,
J.
Decius
, and
P.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Dover Books on Chemistry Series, Dover Publications
,
1980
).
73.
H. M.
Pickett
, “
Vibration-rotation interactions and the choice of rotating axes for polyatomic molecules
,”
J. Chem. Phys.
56
(
4
),
1715
1723
(
1972
).
74.
R. C.
Woods
, “
A general program for the calculation of internal rotation splittings in microwave spectroscopy
,”
J. Mol. Spectrosc.
21
(
1-4
),
4
24
(
1966
).
75.
D. R.
Herschbach
, “
Calculation of energy levels for internal torsion and over-all rotation. III
,”
J. Chem. Phys.
31
(
1
),
91
108
(
1959
).
76.
A.
Bauder
, “
Fundamentals of rotational spectroscopy
,” in
Handbook of High-Resolution Spectroscopy
(John Wiley & Sons, Ltd.,
2011
).
77.
M. D.
Shuster
, “
A survey of attitude representations
,”
J. Astronaut. Sci.
41
(
4
),
439
517
(
1993
).
78.
J. A.
Cina
, “
Classical adiabatic angle and geometrical phase in spin precession
,”
Chem. Phys. Lett.
132
,
393
395
(
1986
).
79.
J.
Stillwell
,
Naive Lie Theory
(
Springer Science & Business Media
,
2008
).
80.
W.
Rossmann
,
Lie Groups: An Introduction through Linear Groups
(
Oxford University Press on Demand
,
2002
), Vol. 5.
81.
R.
Gilmore
,
Lie Groups, Lie Algebras, and Some of Their Applications
(
Courier Corporation
,
2012
).
82.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
(
Springer Science & Business Media
,
2000
), Vol. 107.
83.
O.
Rodrigues
, “
Des lois gometriques qui regissent les deplacements d’un systeme solide dans l’espace, et de la variation des coordonnees provenant de ces deplacements consideres independamment ded causes qui peuvent les produire
,”
J. Math. Pures Appl.
5
,
380
440
(
1840
).
84.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading
,
1980
), p.
165
.
85.
D. A.
Varshalovich
,
A. N.
Moskalev
, and
V. K.
Khersonskii
,
Quantum Theory of Angular Momentum
(
World Scientific
,
1988
).
86.
J.
Stuelpnagel
, “
On the parametrization of the three-dimensional rotation group
,”
SIAM Rev.
6
(
4
),
422
430
(
1964
).
87.
P.
Betsch
and
R.
Siebert
, “
Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration
,”
Int. J. Numer. Methods Eng.
79
(
4
),
444
473
(
2009
).
88.
Z.
Terze
,
A.
Müller
, and
D.
Zlatar
, “
Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations
,”
Multibody Syst. Dyn.
38
(
3
),
201
225
(
2016
).
89.
J. S.
Dai
, “
Euler–Rodrigues formula variations, quaternion conjugation and intrinsic connections
,”
Mech. Mach. Theory
92
,
144
152
(
2015
).
90.
J.
Mathews
and
R.
Howell
,
Complex Analysis for Mathematics and Engineering
(
Jones & Bartlett Publishers
,
2012
).
91.
R.
Ball
and
J.
Brindley
, “
The life story of hydrogen peroxide III. Chirality and physical effects at the dawn of life
,”
Origins Life Evol. Biosph.
46
(
1
),
81
93
(
2016
).
92.
P.
Bergman
,
B.
Parise
,
R.
Liseau
,
B.
Larsson
,
H.
Olofsson
,
K.
Menten
, and
R.
Güsten
, “
Detection of interstellar hydrogen peroxide
,”
Astron. Astrophys.
,
531
,
L8
,
2011
.
93.
R. L.
Redington
,
W.
Olson
, and
P.
Cross
, “
Studies of hydrogen peroxide: The infrared spectrum and the internal rotation problem
,”
J. Chem. Phys.
36
(
5
),
1311
1326
(
1962
).
94.
R. H.
Hunt
,
R. A.
Leacock
,
C. W.
Peters
, and
K. T.
Hecht
, “
Internal-rotation in hydrogen peroxide: The far-infrared spectrum and the determination of the hindering potential
,”
J. Chem. Phys.
42
(
6
),
1931
1946
(
1965
).
95.
J.
Koput
,
S.
Carter
, and
N. C.
Handy
, “
Ab initio prediction of the vibrational-rotational energy levels of hydrogen peroxide and its isotopomers
,”
J. Chem. Phys.
115
(
18
),
8345
8350
(
2001
).
96.
M. L.
Senent
,
S.
Fernández-Herrera
, and
Y.
Smeyers
, “
Ab initio determination of the roto-torsional energy levels of hydrogen peroxide
,”
Spectrochim. Acta, Part A
56
(
8
),
1457
1468
(
2000
).
97.
J. T.
Hougen
, “
Summary of group theoretical results for microwave and infrared studies of H2O2
,”
Can. J. Phys.
62
(
12
),
1392
1402
(
1984
).
98.
J.-M.
Flaud
,
C.
Camy-Peyret
,
J.
Johns
, and
B.
Carli
, “
The far infrared spectrum of H2O2. first observation of the staggering of the levels and determination of the cis barrier
,”
J. Chem. Phys.
91
(
3
),
1504
1510
(
1989
).
99.
C.
Camy-Peyret
,
J.-M.
Flaud
,
J.
Johns
, and
M.
Noel
, “
Torsion-vibration interaction in H2O2: First high-resolution observation of ν3
,”
J. Mol. Spectrosc.
155
(
1
),
84
104
(
1992
).
100.
D. J.
Finnigan
,
A. P.
Cox
,
A. H.
Brittain
, and
J. G.
Smith
, “
Centrifugal distortion in the microwave spectra of cis-and trans-nitrous acids. determination of the quadratic potential functions and average structures
,”
J. Chem. Soc., Faraday Trans. 2
68
,
548
565
(
1972
).
101.
D.
Lauvergnat
,
J. M.
Luis
,
B.
Kirtman
,
H.
Reis
, and
A.
Nauts
, “
Numerical and exact kinetic energy operator using eckart conditions with one or several reference geometries: Application to HONO
,”
J. Chem. Phys.
144
(
8
),
084116
(
2016
).
102.
M.
Sala
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
, “
Effect of the overall rotation on the cis-trans isomerization of HONO induced by an external field
,”
Phys. Chem. Chem. Phys.
14
(
11
),
3791
3801
(
2012
).
103.
F.
Richter
,
F.
Gatti
,
C.
Léonard
,
F.
Le Quéré
, and
H.-D.
Meyer
, “
Time-dependent wave packet study on trans-cis isomerization of HONO driven by an external field
,”
J. Chem. Phys.
127
(
16
),
164315
(
2007
).
104.
E.
Pradhan
and
A.
Brown
, “
A ground state potential energy surface for HONO based on a neural network with exponential fitting functions
,”
Phys. Chem. Chem. Phys.
19
(
33
),
22272
22281
(
2017
).
105.
P.
Pham
and
Y.
Guo
, “
A semiclassical study of cis-trans isomerization in HONO using an interpolating moving least-squares potential
,”
J. Chem. Phys.
138
(
14
),
144304
(
2013
).
106.
K. C.
Clemitshaw
, “
Coupling between the tropospheric photochemistry of nitrous acid (HONO) and nitric acid (HNO3)
,”
Environ. Chem.
3
(
1
),
31
34
(
2006
).
107.
X.
Zhou
,
H. J.
Beine
,
R. E.
Honrath
,
J. D.
Fuentes
,
W.
Simpson
,
P. B.
Shepson
, and
J. W.
Bottenheim
, “
Snowpack photochemical production of HONO: A major source of OH in the arctic boundary layer in springtime
,”
Geophys. Res. Lett.
28
(
21
),
4087
4090
, https://doi.org/10.1029/2001gl013531 (
2001
).
108.
Y.
Miller
,
G.
Chaban
,
B.
Finlayson-Pitts
, and
R.
Gerber
, “
Photochemical processes induced by vibrational overtone excitations: Dynamics simulations for cis-HONO, trans-HONO, HNO3, and HNO3–H2O
,”
J. Phys. Chem. A
110
(
16
),
5342
5354
(
2006
).
109.
Y.
Qin
and
D. L.
Thompson
, “
Classical dynamics study of HONO using constrained trajectories
,”
J. Chem. Phys.
96
(
3
),
1992
1999
(
1992
).
110.
J. S.
Crighton
and
S.
Bell
, “
Internal rotation in the spectrum of acetaldehyde
,”
J. Mol. Spectrosc.
112
(
2
),
315
327
(
1985
).
111.
R.
Kilb
,
C. C.
Lin
, and
E. B.
Wilson
, Jr
, “
Calculation of energy levels for internal torsion and over-all rotation. II. CH3CHO type molecules; acetaldehyde spectra
,”
J. Chem. Phys.
26
(
6
),
1695
1703
(
1957
).
112.
I.
Kleiner
,
J. T.
Hougen
,
R.
Suenram
,
F. J.
Lovas
, and
M.
Godefroid
, “
The ground torsional state of acetaldehyde
,”
J. Mol. Spectrosc.
148
(
1
),
38
49
(
1991
).
113.
I.
Kleiner
,
J. T.
Hougen
,
J.-U.
Grabow
,
S.
Belov
,
M. Y.
Tretyakov
, and
J.
Cosléou
, “
The third and fourth torsional states of acetaldehyde
,”
J. Mol. Spectrosc.
179
(
1
),
41
60
(
1996
).
114.
I.
Smirnov
,
E.
Alekseev
,
V.
Ilyushin
,
L.
Margulés
,
R.
Motiyenko
, and
B.
Drouin
, “
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz
,”
J. Mol. Spectrosc.
295
,
44
50
(
2014
).
115.
P.
Jansen
,
I.
Kleiner
,
L.-H.
Xu
,
W.
Ubachs
, and
H. L.
Bethlem
, “
Sensitivity of transitions in internal rotor molecules to a possible variation of the proton-to-electron mass ratio
,”
Phys. Rev. A
84
(
6
),
062505
(
2011
).
116.
A.
Bauder
and
H. H.
Günthard
, “
Internal rotation in acetaldehyde
,”
J. Mol. Spectrosc.
60
(
1-3
),
290
311
(
1976
).
117.
R. G.
Littlejohn
and
M.
Reinsch
, “
Gauge fields in the separation of rotations andinternal motions in the n-body problem
,”
Rev. Mod. Phys.
69
(
1
),
213
275
(
1997
).
118.
H. J.
Bernstein
and
A. V.
Phillips
, “
Fiber bundles and quantum theory
,”
Sci. Am.
245
(
1
),
122
137
(
1981
).
119.
C.
Eckart
, “
Some studies concerning rotating axes and polyatomic molecules
,”
Phys. Rev.
47
(
7
),
552
(
1935
).
120.
J. D.
Louck
and
H. W.
Galbraith
, “
Eckart vectors, Eckart frames, and polyatomic molecules
,”
Rev. Mod. Phys.
48
(
1
),
69
(
1976
).
121.
V.
Szalay
, “
Eckart−Sayvetz conditions revisited
,”
J. Chem. Phys.
140
(
23
),
234107-1
234107-12
(
2014
).
122.
V.
Szalay
, “
Aspects of the Eckart frame ro-vibrational kinetic energy operator
,”
J. Chem. Phys.
143
(
6
),
064104-1
064104-11
(
2015
).
123.
V.
Szalay
, “
Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice
,”
J. Chem. Phys.
146
(
12
),
124107-1
124107-18
(
2017
).
124.
J.
Wei
and
E.
Norman
, “
Lie algebraic solution of linear differential equations
,”
J. Math. Phys.
4
(
4
),
575
581
(
1963
).
125.
J.
Wei
and
E.
Norman
, “
On global representations of the solutions of linear differential equations as a product of exponentials
,”
Proc. Am. Math. Soc.
15
(
2
),
327
334
(
1964
).
126.
J. F.
Hamilton
, Jr
and
L.
Schulman
, “
Path integrals and product integrals
,”
J. Math. Phys.
12
(
1
),
160
164
(
1971
).
127.
J. D.
Dollard
and
C. N.
Friedman
, “
On strong product integration
,”
J. Funct. Anal.
28
(
3
),
309
354
(
1978
).
128.
J. D.
Dollard
and
C. N.
Friedman
, “
Product integration of measures and applications
,”
J. Differ. Equations
31
(
3
),
418
464
(
1979
).
129.
J. D.
Dollard
and
C. N.
Friedman
,
Product Integration with Application to Differential Equations
(
Cambridge University Press
,
1984
).
130.
R. L.
Karp
,
F.
Mansouri
, and
J. S.
Rno
, “
Product integral formalism and non-abelian Stokes theorem
,”
J. Math. Phys.
40
(
11
),
6033
6043
(
1999
).
You do not currently have access to this content.