Several molecular coarse-graining methods have been proposed in recent years to derive chemical- and state-point transferable force fields. While these force fields describe structural and thermodynamic properties in good agreement with fine-grained models and experiments, dynamic properties are usually overestimated. Herein, we examine if the long-time dynamic properties of molecular coarse-grained (CG) systems can be correctly represented by employing a dissipative particle dynamics (DPD) thermostat, which is “bottom-up informed” by means of a variant of the Markovian Mori-Zwanzig (MZ) DPD coarse-graining method. We report single-site and multiple-site CG models for a monomer, dimer, and 24mer based on 2,2-dimethyl propane as a chemical repeat unit and report data obtained from MZ-DPD simulations of liquids, polymer solutions, and polymer melts. We find that despite incomplete time scale separation of the molecular CG model, MZ-DPD achieves quantitative accuracy in predicting diffusive dynamics in single-component liquids and polymer solutions (24mers in a dimer solvent). We also find that MZ-DPD simulations of molecular penetrant diffusion in polymer networks do not reach quantitative agreement with the fine-grained model. Modeling diffusion governed by the activated barrier crossing of small molecular penetrants in these dense systems requires an accurate description of energy barriers, presumably combined with the treatment of memory effects. The use of a MZ-DPD thermostat extends the scope and applicability of molecular CG models for multicomponent systems where a correct description of the relative diffusion rates of the different components is important.

1.
C.
Peter
and
K.
Kremer
,
Faraday Discuss.
144
,
9
(
2010
).
2.
E.
Brini
,
E. A.
Algaer
,
P.
Ganguly
,
C.
Li
,
F.
Rodríguez-Ropero
, and
N. F. A.
van der Vegt
,
Soft Matter
9
,
2108
(
2013
).
3.
W. G.
Noid
,
J. Chem. Phys.
139
,
090901
(
2013
).
4.
A.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
3737
(
1995
).
5.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
1636
(
2003
).
6.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
7.
M. S.
Shell
,
J. Chem. Phys.
129
,
144108
(
2008
).
8.
Y.
Wang
,
W. G.
Noid
,
P.
Liu
, and
G. A.
Voth
,
Phys. Chem. Chem. Phys.
11
,
2002
(
2009
).
9.
E.
Brini
,
V.
Marcon
, and
N. F. A.
van der Vegt
,
Phys. Chem. Chem. Phys.
13
,
10468
(
2011
).
10.
W.
Tschöp
,
K.
Kremer
,
J.
Batoulis
,
T.
Bürger
, and
O.
Hahn
,
Acta Polym.
49
,
61
74
(
1998
).
11.
R. L. C.
Akkermans
and
W. J.
Briels
,
J. Chem. Phys.
113
,
6409
(
2000
).
12.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
125
,
151101
(
2006
).
13.
C.
Hijón
,
P.
Español
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
,
Faraday Discuss.
144
,
301
(
2010
).
14.
D.
Fritz
,
K.
Koschke
,
V. A.
Harmandaris
,
N. F. A.
van der Vegt
, and
K.
Kremer
,
Phys. Chem. Chem. Phys.
13
,
10412
(
2011
).
15.
D.
Fritz
,
C. R.
Herbers
,
K.
Kremer
, and
N. F. A.
van der Vegt
,
Soft Matter
5
,
4556
(
2009
).
16.
V. A.
Harmandaris
and
K.
Kremer
Macromolecules
42
,
791
802
(
2009
).
17.
R.
Zwanzig
,
Phys. Rev.
124
,
983
992
(
1961
).
18.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
455
(
1965
).
19.
K.
Kawasaki
,
J. Phys. A: Math., Nucl. Gen.
6
,
1289
1295
(
1973
).
20.
T.
Kinjo
and
S.
Hyodo
,
Phys. Rev. E
75
,
051109
(
2007
).
21.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
160
(
1992
).
22.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
,
191
196
(
1995
).
23.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
24.
P.
Español
and
P. B.
Warren
,
J. Chem. Phys.
146
,
150901
(
2017
).
25.
A.
Eriksson
,
M. N.
Jacobi
,
J.
Nyström
, and
K.
Tunstrøm
,
J. Phys.: Condens. Matter
21
,
095401
(
2009
).
26.
Z.
Li
,
X.
Bian
,
B.
Caswell
, and
G. E.
Karniadakis
,
Soft Matter
10
,
8659
8672
(
2014
).
27.
H.
Lei
,
B.
Caswell
, and
G. E.
Karniadakis
,
Phys. Rev. E
81
,
026704
(
2010
).
28.
Z.
Li
,
X.
Bian
,
X.
Li
, and
G. E.
Karniadakis
,
J. Chem. Phys.
143
,
243128
(
2015
).
29.
Z.
Li
,
H. S.
Lee
,
E.
Darve
, and
G. E.
Karniadakis
,
J. Chem. Phys.
146
,
014104
(
2017
).
30.
A.
Eriksson
,
M. N.
Jacobi
,
J.
Nyström
, and
K.
Tunstrøm
,
J. Chem. Phys.
129
,
024106
(
2008
).
31.
A.
Eriksson
,
M. N.
Jacobi
,
J.
Nyström
, and
K.
Tunstrøm
,
J. Chem. Phys.
130
,
164509
(
2009
).
32.
S.
Izvekov
and
B. M.
Rice
,
J. Chem. Phys.
140
,
104104
(
2014
).
33.
S.
Trément
,
B.
Schnell
,
L.
Petitjean
,
M.
Couty
, and
B.
Rousseau
,
J. Chem. Phys.
140
,
134113
(
2014
).
34.
A.
Dequidt
and
J. G.
Solano Canchaya
,
J. Chem. Phys.
143
,
084122
(
2015
).
35.
C. A.
Lemarchand
,
M.
Couty
, and
B.
Rousseau
,
J. Chem. Phys.
146
,
074904
(
2017
).
36.
G.
Deichmann
,
V.
Marcon
, and
N. F. A.
van der Vegt
,
J. Chem. Phys.
141
,
224109
(
2014
).
37.
S.
Izvekov
,
J. Chem. Phys.
138
,
134106
(
2013
).
38.
Y.
Yoshimoto
,
I.
Kinefuchi
,
T.
Mima
,
A.
Fukushima
,
T.
Tokumasu
, and
S.
Takagi
,
Phys. Rev. E
88
,
043305
(
2013
).
39.
G.
Jung
,
M.
Hanke
, and
F.
Schmid
,
J. Chem. Theory Comput.
13
,
2481
2488
(
2017
).
40.
S.
Izvekov
and
B. M.
Rice
,
Phys. Chem. Chem. Phys.
17
,
10795
10804
(
2015
).
41.
L.
Gao
and
W.
Fang
,
J. Chem. Phys.
135
,
184101
(
2011
).
43.
D.
Fritz
,
V. A.
Harmandaris
,
K.
Kremer
, and
N. F. A.
van der Vegt
,
Macromolecules
42
,
7579
7588
(
2009
).
44.
S.
Izvekov
,
J. Chem. Phys.
146
,
124109
(
2017
).
45.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
2577
(
1998
).
46.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
47.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
48.
49.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
7190
(
1981
).
50.
J.
Kappler
,
J. O.
Daldrop
,
F. N.
Brüning
,
M. D.
Boehle
, and
R. R.
Netz
,
J. Chem. Phys.
148
,
014903
(
2018
).
51.
A. A.
Gusev
and
U. W.
Suter
,
J. Chem. Phys.
99
,
2228
2234
(
1993
).
52.
F.
Müller-Plathe
,
Acta Polym.
45
,
259
293
(
1994
).
53.
P. K.
Depa
and
J. K.
Maranas
,
J. Chem. Phys.
123
,
094901
(
2005
).
54.
P. K.
Depa
and
J. K.
Maranas
,
J. Chem. Phys.
126
,
054903
(
2007
).
55.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
,
J. Chem. Theory Comput.
6
,
1170
1180
(
2010
).
You do not currently have access to this content.