Molecular-level computer simulations of peptide aggregation, translocation, and protonation at and in biomembranes are impeded by the large time and length scales involved. We present a computationally efficient, coarse-grained, and solvent-free model for the interaction between lipid bilayers and peptides. The model combines an accurate description of mechanical membrane properties with a new granular representation of the dielectric mismatch between lipids and the aqueous phase. All-atom force fields can be easily mapped onto the coarse-grained model, and parameters for coarse-grained monopeptides accurately extrapolate to membrane permeation free energies for the corresponding dipeptides and tripeptides. Acid-base equilibria of titratable amino acid residues are further studied using a constant-pH ensemble, capturing protonation state changes upon membrane translocation. Important differences between histidine, lysine, and arginine are observed, which are in good agreement with experimental observations.

1.
F.
Milletti
, “
Cell-penetrating peptides: Classes, origin, and current landscape
,”
Drug Discovery Today
17
,
850
860
(
2012
).
2.
F.
Madani
,
S.
Lindberg
,
Ü.
Langel
,
S.
Futaki
, and
A.
Gräslund
, “
Mechanisms of cellular uptake of cell-penetrating peptides
,”
J. Biophys.
2011
,
1
10
.
3.
L.
Lombardi
,
M. I.
Stellato
,
R.
Oliva
,
A.
Falanga
,
M.
Galdiero
,
L.
Petraccone
,
G.
D’Errico
,
A. D.
Santis
,
S.
Galdiero
, and
P. D.
Vecchio
, “
Antimicrobial peptides at work: Interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes
,”
Sci. Rep.
7
,
44425
(
2017
).
4.
C.
Bechara
and
S.
Sagan
, “
Cell-penetrating peptides: 20 years later, where do we stand?
,”
FEBS Lett.
587
,
1693
1702
(
2013
).
5.
M.
Vazdar
,
J.
Heyda
,
P. E.
Mason
,
G.
Tesei
,
C.
Allolio
,
M.
Lund
, and
P.
Jungwirth
, “
Arginine ‘magic’: Guanidinium like-charge ion pairing from aqueous salts to cell penetrating peptides
,”
Acc. Chem. Res.
51
,
1455
1464
(
2018
).
6.
A.
Parsegian
, “
Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems
,”
Nature
221
,
844
846
(
1969
).
7.
P.
Jordan
,
R.
Bacquet
,
J.
McCammon
, and
P.
Tran
, “
How electrolyte shielding influences the electrical potential in transmembrane ion channels
,”
Biophys. J.
55
,
1041
1052
(
1989
).
8.
R.
Allen
and
J.-P.
Hansen
, “
Electrostatic interactions of charges and dipoles near a polarizable membrane
,”
Mol. Phys.
101
,
1575
1585
(
2003
).
9.
J. N.
Israelachvili
, “
Interactions involving the polarization of molecules
,” in
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
San Diego
,
2011
), Chap. 5, pp.
91
106
.
10.
K.
Cahill
, “
Models of membrane electrostatics
,”
Phys. Rev. E
85
,
051921
(
2012
).
11.
A.
Raudino
and
D.
Mauzerall
, “
Dielectric properties of the polar head group region of zwitterionic lipid bilayers
,”
Biophys. J.
50
,
441
449
(
1986
).
12.
K.
Bohinc
,
J. J.
Giner-Casares
, and
S.
May
, “
Analytic model for the dipole potential of a lipid layer
,”
J. Phys. Chem. B
118
,
7568
7576
(
2014
).
13.
L.
Wang
, “
Measurements and implications of the membrane dipole potential
,”
Annu. Rev. Biochem.
81
,
615
635
(
2012
).
14.
M. B.
Ulmschneider
,
J. P.
Ulmschneider
,
J. A.
Freites
,
G.
von Heijne
,
D. J.
Tobias
, and
S. H.
White
, “
Transmembrane helices containing a charged arginine are thermodynamically stable
,”
Eur. Biophys. J.
46
,
627
637
(
2017
).
15.
I. R.
Cooke
and
M.
Deserno
, “
Solvent-free model for self-assembling fluid bilayer membranes: Stabilization of the fluid phase based on broad attractive tail potentials
,”
J. Chem. Phys.
123
,
224710
(
2005
).
16.
M.
Deserno
, “
Mesoscopic membrane physics: Concepts, simulations, and selected applications
,”
Macromol. Rapid Commun.
30
,
752
771
(
2009
).
17.
T.
Bereau
and
M.
Deserno
, “
Generic coarse-grained model for protein folding and aggregation
,”
J. Chem. Phys.
130
,
235106
(
2009
).
18.
T.
Bereau
,
Z.-J.
Wang
, and
M.
Deserno
, “
More than the sum of its parts: Coarse-grained peptide–lipid interactions from a simple cross-parametrization
,”
J. Chem. Phys.
140
,
115101
(
2014
).
19.
M.
Lund
and
B.
Jönsson
, “
On the charge regulation of proteins
,”
Biochemistry
44
,
5722
5727
(
2005
).
20.
M.
Orsi
and
J. W.
Essex
, “
The ELBA force field for coarse-grain modeling of lipid membranes
,”
PLoS One
6
,
e28637
(
2011
).
21.
C. A.
López
,
Z.
Sovova
,
F. J.
van Eerden
,
A. H.
de Vries
, and
S. J.
Marrink
, “
Martini force field parameters for glycolipids
,”
J. Chem. Theory Comput.
9
,
1694
1708
(
2013
).
22.
A.
Srivastava
and
G. A.
Voth
, “
Solvent-free, highly coarse-grained models for charged lipid systems
,”
J. Chem. Theory Comput.
10
,
4730
4744
(
2014
).
23.
I.
Vorobyov
,
I.
Kim
,
Z. T.
Chu
, and
A.
Warshel
, “
Refining the treatment of membrane proteins by coarse-grained models
,”
Proteins: Struct., Funct., Bioinf.
84
,
92
117
(
2015
).
24.
C.
Neale
,
W. F. D.
Bennett
,
D. P.
Tieleman
, and
R.
Pomès
, “
Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers
,”
J. Chem. Theory Comput.
7
,
4175
4188
(
2011
).
25.
Y.
Wang
,
D.
Hu
, and
D.
Wei
, “
Transmembrane permeation mechanism of charged methyl guanidine
,”
J. Chem. Theory Comput.
10
,
1717
1726
(
2014
).
26.
C.
Neale
and
R.
Pomès
, “
Sampling errors in free energy simulations of small molecules in lipid bilayers
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
2539
2548
(
2016
).
27.
R.
Menichetti
,
K.
Kremer
, and
T.
Bereau
, “
Efficient potential of mean force calculation from multiscale simulations: Solute insertion in a lipid membrane
,”
Biochem. Biophys. Res. Commun.
498
,
282
287
(
2018
).
28.
N.
Pokhrel
and
L.
Maibaum
, “
Free energy calculations of membrane permeation: Challenges due to strong headgroup–solute interactions
,”
J. Chem. Theory Comput.
14
,
1762
1771
(
2018
).
29.
D.
Sun
,
J.
Forsman
, and
C. E.
Woodward
, “
Evaluating force fields for the computational prediction of ionized arginine and lysine side-chains partitioning into lipid bilayers and octanol
,”
J. Chem. Theory Comput.
11
,
1775
1791
(
2015
).
30.
Y.
Hu
,
S. K.
Sinha
, and
S.
Patel
, “
Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: The case of charged oligo-arginine translocation into DMPC bilayers
,”
J. Phys. Chem. B
118
,
11973
11992
(
2014
).
31.
J. F.
Nagle
, “
Experimentally determined tilt and bending moduli of single-component lipid bilayers
,”
Chem. Phys. Lipids
205
,
18
24
(
2017
).
32.
H. A.
Stern
and
S. E.
Feller
, “
Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation
,”
J. Chem. Phys.
118
,
3401
3412
(
2003
).
33.
J. L.
MacCallum
and
D. P.
Tieleman
, “
Hydrophobicity scales: A thermodynamic looking glass into lipid–protein interactions
,”
Trends Biochem. Sci.
36
,
653
662
(
2011
).
34.
M.
Ullner
,
B.
Jönsson
,
B.
Söderberg
, and
C.
Peterson
, “
A Monte Carlo study of titrating polyelectrolytes
,”
J. Chem. Phys.
104
,
3048
3057
(
1996
).
35.
C.
Böttcher
, “
Theory of electric polarization
,” in
Dielectrics in Static Fields
(
Elsevier Science
,
1973
), Vol. 1, pp.
113
127
.
36.
D. F.
Evans
and
H.
Wennerström
, “
The colloidal domain: Where physics, chemistry, biology, and technology meet
,” in
Advances in Interfacial Engineering
(
Wiley-VCH
,
New York
,
1999
), pp.
239
247
.
37.
R.
Wang
and
Z.-G.
Wang
, “
Continuous self-energy of ions at the dielectric interface
,”
Phys. Rev. Lett.
112
,
136101
(
2014
).
38.
J. N.
Israelachvili
, “
Contrasts between intermolecular, interparticle, and intersurface forces
,” in
Intermolecular and Surface Forces
, 3rd ed., edited by
J. N.
Israelachvili
(
Academic Press
,
San Diego
,
2011
), Chap. 11, pp.
205
222
.
39.
R. B.
Hermann
, “
Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area
,”
J. Phys. Chem.
76
,
2754
2759
(
1972
).
40.
G. V.
Miloshevsky
,
A.
Hassanein
,
M. B.
Partenskii
, and
P. C.
Jordan
, “
Electroelastic coupling between membrane surface fluctuations and membrane-embedded charges: Continuum multidielectric treatment
,”
J. Chem. Phys.
132
,
234707
(
2010
).
41.
B.
Stenqvist
,
A.
Thuresson
,
A.
Kurut
,
R.
Vácha
, and
M.
Lund
, “
Faunus—A flexible framework for Monte Carlo simulation
,”
Mol. Simul.
39
,
1233
1239
(
2013
).
42.
O.
Engkvist
and
G.
Karlström
, “
A method to calculate the probability distribution for systems with large energy barriers
,”
Chem. Phys.
213
,
63
76
(
1996
).
43.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
44.
F.
Calvo
, “
Sampling along reaction coordinates with the Wang–Landau method
,”
Mol. Phys.
100
,
3421
3427
(
2002
).
45.
M. P.
Allen
and
D. J.
Tildesley
, “
Advanced Monte Carlo methods
,” in
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
Oxford
,
2017
), Chap. 9, pp.
297
341
.
46.
M. O.
Khan
,
G.
Kennedy
, and
D. Y. C.
Chan
, “
A scalable parallel Monte Carlo method for free energy simulations of molecular systems
,”
J. Comput. Chem.
26
,
72
77
(
2004
).
47.
G.
Torrie
and
J.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
48.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
49.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides
,”
J. Phys. Chem. B
105
,
6474
6487
(
2001
).
50.
A.
Maciejewski
,
M.
Pasenkiewicz-Gierula
,
O.
Cramariuc
,
I.
Vattulainen
, and
T.
Rog
, “
Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration
,”
J. Phys. Chem. B
118
,
4571
4581
(
2014
).
51.
W.
Kulig
,
M.
Pasenkiewicz-Gierula
, and
T.
Róg
, “
Cis and trans unsaturated phosphatidylcholine bilayers: A molecular dynamics simulation study
,”
Chem. Phys. Lipids
195
,
12
20
(
2016
).
52.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
53.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
854
(
2013
).
54.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
55.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
56.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
57.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
58.
B.
Hess
, “
P-LINCS: A parallel linear constraint solver for molecular simulation
,”
J. Chem. Theory Comput.
4
,
116
122
(
2008
).
59.
J. S.
Hub
,
B. L.
de Groot
, and
D.
van der Spoel
, “
g_wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates
,”
J. Chem. Theory Comput.
6
,
3713
3720
(
2010
).
60.
L.
Li
,
I.
Vorobyov
, and
T. W.
Allen
, “
The different interactions of lysine and arginine side chains with lipid membranes
,”
J. Phys. Chem. B
117
,
11906
11920
(
2013
).
61.
D.
Mitchell
,
L.
Steinman
,
D.
Kim
,
C.
Fathman
, and
J.
Rothbard
, “
Polyarginine enters cells more efficiently than other polycationic homopolymers
,”
J. Pept. Res.
56
,
318
325
(
2000
).
62.
S.
Futaki
,
T.
Suzuki
,
W.
Ohashi
,
T.
Yagami
,
S.
Tanaka
,
K.
Ueda
, and
Y.
Sugiura
, “
Arginine-rich peptides
,”
J. Biol. Chem.
276
,
5836
5840
(
2000
).
63.
J. L.
MacCallum
,
W. F. D.
Bennett
, and
D. P.
Tieleman
, “
Distribution of amino acids in a lipid bilayer from computer simulations
,”
Biophys. J.
94
,
3393
3404
(
2008
).
64.
Physical Constants of Organic Compounds in CRC Handbook of Chemistry and Physics
, 98th ed., edited by
J. R.
Rumble
(
CRC Press/Taylor & Francis
,
Boca Raton, FL
,
2018
).
65.
A. N.
Martfeld
,
D. V.
Greathouse
, and
R. E.
Koeppe
, “
Ionization properties of histidine residues in the lipid bilayer membrane environment
,”
J. Biol. Chem.
291
,
19146
19156
(
2016
).
66.
J.
Yoo
and
Q.
Cui
, “
Does arginine remain protonated in the lipid membrane? Insights from microscopic pKa calculations
,”
Biophys. J.
94
,
L61
L63
(
2008
).
67.
S.
Jakobtorweihen
,
A. C.
Zuniga
,
T.
Ingram
,
T.
Gerlach
,
F. J.
Keil
, and
I.
Smirnova
, “
Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic
,”
J. Chem. Phys.
141
,
045102
(
2014
).
68.
A. D.
Robison
,
S.
Sun
,
M. F.
Poyton
,
G. A.
Johnson
,
J.-P.
Pellois
,
P.
Jungwirth
,
M.
Vazdar
, and
P. S.
Cremer
, “
Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers
,”
J. Phys. Chem. B
120
,
9287
9296
(
2016
).
69.
S.
Zeppieri
,
J.
Rodríguez
, and
A. L. L.
de Ramos
, “
Interfacial tension of alkane + water systems
,”
J. Chem. Eng. Data
46
,
1086
1088
(
2001
).

Supplementary Material

You do not currently have access to this content.