The optimal design of DNA origami systems that assemble rapidly and robustly is hampered by the lack of a model for self-assembly that is sufficiently detailed yet computationally tractable. Here, we propose a model for DNA origami that strikes a balance between these two criteria by representing these systems on a lattice at the level of binding domains. The free energy of hybridization between individual binding domains is estimated with a nearest-neighbour model. Double helical segments are treated as being rigid, but we allow flexibility at points where the backbone of one of the strands is interrupted, which provides a reasonably realistic representation of partially and fully assembled states. Particular attention is paid to the constraints imposed by the double helical twist, as they determine where strand crossovers between adjacent helices can occur. To improve the efficiency of sampling configuration space, we develop Monte Carlo methods for sampling scaffold conformations in near-assembled states, and we carry out simulations in the grand canonical ensemble, enabling us to avoid considering states with unbound staples. We demonstrate that our model can quickly sample assembled configurations of a small origami design previously studied with the oxDNA model, as well as a design with staples that span longer segments of the scaffold. The sampling ability of our method should allow for good statistics to be obtained when studying the assembly pathways and is suited to investigating, in particular, the effects of design and assembly conditions on these pathways and their resulting final assembled structures.

1.
N. C.
Seeman
, “
Nucleic acid junctions and lattices
,”
J. Theor. Biol.
99
,
237
(
1982
).
2.
P.
Rothemund
, “
Folding DNA to create nanoscale shapes and patterns
,”
Nature
440
,
297
(
2006
).
3.
S. M.
Douglas
,
H.
Dietz
,
T.
Liedl
,
B.
Hoegberg
,
F.
Graf
, and
W. M.
Shih
, “
Self-assembly of DNA into nanoscale three-dimensional shapes
,”
Nature
459
,
414
(
2009
);
[PubMed]
C. E.
Castro
,
F.
Kilchherr
,
D.-N.
Kim
,
E. L.
Shiao
,
T.
Wauer
,
P.
Wortmann
,
M.
Bathe
, and
H.
Dietz
, “
A primer to scaffolded DNA origami
,”
Nat. Methods
8
,
221
(
2011
);
[PubMed]
D.
Han
,
S.
Pal
,
Y.
Yang
,
S.
Jiang
,
J.
Nangreave
,
Y.
Liu
, and
H.
Yan
, “
DNA gridiron nanostructures based on four-arm junctions
,”
Science
339
,
1412
(
2013
);
[PubMed]
E.
Benson
,
A.
Mohammed
,
J.
Gardell
,
S.
Masich
,
E.
Czeizler
,
P.
Orponen
, and
B.
Hogberg
, “
DNA rendering of polyhedral meshes at the nanoscale
,”
Nature
523
,
441
(
2015
);
[PubMed]
C. E.
Castro
,
H.-J.
Su
,
A. E.
Marras
,
L.
Zhou
, and
J.
Johnson
, “
Mechanical design of DNA nanostructures
,”
Nanoscale
7
,
5913
(
2015
);
[PubMed]
F.
Zhang
,
S.
Jiang
,
S.
Wu
,
Y.
Li
,
C.
Mao
,
Y.
Liu
, and
H.
Yan
, “
Complex wireframe DNA origami nanostructures with multi-arm junction vertices
,”
Nat. Nanotechnol.
10
,
779
(
2015
).
[PubMed]
4.
Y.
Ke
,
S.
Lindsay
,
Y.
Chang
,
Y.
Liu
, and
H.
Yan
, “
Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays
,”
Science
319
,
180
(
2008
).
5.
V.
Linko
,
M.
Eerikainen
, and
M. A.
Kostiainen
, “
A modular DNA origami-based enzyme cascade nanoreactor
,”
Chem. Commun.
51
,
5351
(
2015
);
M.
Liu
,
J.
Fu
,
C.
Hejesen
,
Y.
Yang
,
N. W.
Woodbury
,
K.
Gothelf
,
Y.
Liu
, and
H.
Yan
, “
A DNA tweezer-actuated enzyme nanoreactor
,”
Nat. Commun.
4
,
2127
(
2013
).
[PubMed]
6.
H. T.
Maune
,
S.-p.
Han
,
R. D.
Barish
,
M.
Bockrath
,
W. A.
Goddard
 III
,
P. W. K.
Rothemund
, and
E.
Winfree
, “
Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates
,”
Nat. Nanotechnol.
5
,
61
(
2010
).
7.
V.
Linko
,
A.
Ora
, and
M. A.
Kostiainen
, “
DNA nanostructures as smart drug-delivery vehicles and molecular devices
,”
Trends Biotechnol.
33
,
586
(
2015
).
8.
L.
Cademartiri
and
K. J. M.
Bishop
, “
Programmable self-assembly
,”
Nat. Mater.
14
,
2
(
2015
).
9.
D.
Frenkel
, “
Order through entropy
,”
Nat. Mater.
14
,
9
(
2015
).
10.
Y.
Ke
,
L. L.
Ong
,
W. M.
Shih
, and
P.
Yin
, “
Three-dimensional structures self-assembled from DNA bricks
,”
Science
338
,
1177
(
2012
).
11.
J.-P. J.
Sobczak
,
T. G.
Martin
,
T.
Gerling
, and
H.
Dietz
, “
Rapid folding of DNA into nanoscale shapes at constant temperature
,”
Science
338
,
1458
(
2012
).
12.
K. E.
Dunn
,
F.
Dannenberg
,
T. E.
Ouldridge
,
M.
Kwiatkowska
,
A. J.
Turberfield
, and
J.
Bath
, “
Guiding the folding pathway of DNA origami
,”
Nature
525
,
82
(
2015
).
13.
F.
Dannenberg
,
K. E.
Dunn
,
J.
Bath
,
M.
Kwiatkowska
,
A. J.
Turberfield
, and
T. E.
Ouldridge
, “
Modelling DNA origami self-assembly at the domain level
,”
J. Chem. Phys.
143
,
165102
(
2015
).
14.
X.
Wei
,
J.
Nangreave
,
S.
Jiang
,
H.
Yan
, and
Y.
Liu
, “
Mapping the thermal behavior of DNA origami nanostructures
,”
J. Am. Chem. Soc.
135
,
6165
(
2013
).
15.
J.-M.
Arbona
,
J.-P.
Aimé
, and
J.
Elezgaray
, “
Cooperativity in the annealing of DNA origamis
,”
J. Chem. Phys.
138
,
015105
(
2013
);
[PubMed]
J.-M.
Arbona
,
J.
Elezgaray
, and
J.-P.
Aimé
, “
Modelling the folding of DNA origami
,”
Europhys. Lett.
100
,
28006
(
2012
);
J.-M.
Arbona
,
J.-P.
Aimé
, and
J.
Elezgaray
, “
Folding of DNA origamis
,”
Front. Life Sci.
6
,
11
(
2012
).
16.
J. L. T.
Wah
,
C.
David
,
S.
Rudiuk
,
D.
Baigl
, and
A.
Estevez-Torres
, “
Observing and controlling the folding pathway of DNA origami at the nanoscale
,”
ACS Nano
10
,
1978
(
2016
).
17.
J.
SantaLucia
, Jr.
and
D.
Hicks
, “
The thermodynamics of DNA structural motifs
,”
Annu. Rev. Biophys. Biomol. Struct.
33
,
415
(
2004
).
18.
B. E. K.
Snodin
,
F.
Romano
,
L.
Rovigatti
,
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
, “
Direct simulation of the self-assembly of a small DNA origami
,”
ACS Nano
10
,
1724
(
2016
).
19.
B. E. K.
Snodin
,
F.
Randisi
,
M.
Mosayebi
,
P.
Šulc
,
J. S.
Schreck
,
F.
Romano
,
T. E.
Ouldridge
,
R.
Tsukanov
,
E.
Nir
,
A. A.
Louis
, and
J. P. K.
Doye
, “
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
,”
J. Chem. Phys.
142
,
234901
(
2015
).
20.
P.
Šulc
,
F.
Romano
,
T. E.
Ouldridge
,
L.
Rovigatti
,
J. P. K.
Doye
, and
A. A.
Louis
, “
Sequence-dependent thermodynamics of a coarse-grained DNA model
,”
J. Chem. Phys.
137
,
135101
(
2012
).
21.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
, “
Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model
,”
J. Chem. Phys.
134
,
085101
(
2011
).
22.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
, “
DNA nanotweezers studied with a coarse-grained model of DNA
,”
Phys. Rev. Lett.
104
,
178101
(
2010
).
23.
A.
Reinhardt
and
D.
Frenkel
, “
Numerical evidence for nucleated self-assembly of DNA brick structures
,”
Phys. Rev. Lett.
112
,
238103
(
2014
);
[PubMed]
W. M.
Jacobs
,
A.
Reinhardt
, and
D.
Frenkel
, “
Rational design of self-assembly pathways for complex multicomponent structures
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
6313
(
2015
);
[PubMed]
A.
Reinhardt
and
D.
Frenkel
, “
DNA brick self-assembly with an off-lattice potential
,”
Soft Matter
12
,
6253
(
2016
).
[PubMed]
24.
M.
Sajfutdinow
,
W. M.
Jacobs
,
A.
Reinhardt
,
C.
Schneider
, and
D. M.
Smith
, “
Direct observation and rational design of nucleation behavior in addressable self-assembly
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E5877
(
2018
).
25.
H. K.
Wayment-Steele
,
D.
Frenkel
, and
A.
Reinhardt
, “
Investigating the role of boundary bricks in DNA brick self-assembly
,”
Soft Matter
13
,
1670
(
2017
).
26.
E.
Protozanova
,
P.
Yakovchuk
, and
M. D.
Frank-Kamenetskii
, “
Stacked–unstacked equilibrium at the nick site of DNA
,”
J. Mol. Biol.
342
,
775
(
2004
);
[PubMed]
P.
Yakovchuk
,
E.
Protozanova
, and
M. D.
Frank-Kamenetskii
, “
Base-stacking and base-pairing contributions into thermal stability of the DNA double helix
,”
Nucleic Acids Res.
34
,
564
(
2006
).
[PubMed]
27.
E.
Marinari
and
G.
Parisi
, “
Simulated tempering: A new Monte Carlo scheme
,”
Europhys. Lett.
19
,
451
(
1992
).
28.
V. I.
Manousiouthakis
and
M. W.
Deem
, “
Strict detailed balance is unnecessary in Monte Carlo simulation
,”
J. Chem. Phys.
110
,
2753
(
1999
).
29.
J. I.
Siepmann
and
D.
Frenkel
, “
Configurational bias Monte Carlo: A new sampling scheme for flexible chains
,”
Mol. Phys.
75
,
59
(
1992
).
30.
S.
Consta
,
N. B.
Wilding
,
D.
Frenkel
, and
Z.
Alexandrowicz
, “
Recoil growth: An efficient simulation method for multi-polymer systems
,”
J. Chem. Phys.
110
,
3220
(
1999
).
31.
S.
Consta
,
T. J. H.
Vlugt
,
J. W.
Hoeth
,
B.
Smit
, and
D.
Frenkel
, “
Recoil growth algorithm for chain molecules with continuous interactions
,”
Mol. Phys.
97
,
1243
(
1999
).
32.
M.
Dijkstra
,
D.
Frenkel
, and
J.-P.
Hansen
, “
Phase separation in binary hard-core mixtures
,”
J. Chem. Phys.
101
,
3179
(
1994
).
33.
D.-N.
Kim
,
F.
Kilchherr
,
H.
Dietz
, and
M.
Bathe
, “
Quantitative prediction of 3d solution shape and flexibility of nucleic acid nanostructures
,”
Nucleic Acids Res.
40
,
2862
(
2012
).
34.
J. D.
Chodera
,
W. C.
Swope
,
J. W.
Pitera
,
C.
Seok
, and
K. A.
Dill
, “
Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations
,”
J. Chem. Theory Comput.
3
,
26
(
2007
).

Supplementary Material

You do not currently have access to this content.