Spectral gap optimization of order parameters (SGOOP) [P. Tiwary and B. J. Berne, Proc. Natl. Acad. Sci. U. S. A. 113, 2839 (2016)] is a method for constructing the reaction coordinate (RC) in molecular systems, especially when they are plagued with hard to sample rare events, given a larger dictionary of order parameters or basis functions and limited static and dynamic information about the system. In its original formulation, SGOOP is designed to construct a 1-dimensional RC. Here we extend its scope by introducing a simple but powerful extension based on the notion of conditional probability factorization where known features are effectively washed out to learn additional and possibly hidden features of the energy landscape. We show how SGOOP can be used to proceed in a sequential and bottom-up manner to (i) systematically probe the need for extending the dimensionality of the RC and (ii) if such a need is identified, learn additional coordinates of the RC in a computationally efficient manner. We formulate the method and demonstrate its utility through three illustrative examples, including the challenging and important problem of calculating the kinetics of benzene unbinding from the protein T4L99A lysozyme, where we obtain excellent agreement in terms of dissociation pathway and kinetics with other sampling methods and experiments. In this last case, starting from a larger dictionary of 11 order parameters that are generic for ligand unbinding processes, we demonstrate how to automatically learn a 2-dimensional RC, which we then use in the infrequent metadynamics protocol to obtain 16 independent unbinding trajectories. We believe our method will be a big step in increasing the utility of SGOOP in performing intuition-free sampling of complex systems. Finally, we believe that the utility of our protocol is amplified by its applicability to not just SGOOP but also other generic methods for constructing the RC.

1.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
122
,
014503
(
2005
).
2.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Ann. Rev. Phys. Chem.
53
,
291
(
2002
).
3.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
,
Ann. Rev. Phys. Chem.
64
,
295
(
2013
).
4.
B.
Peters
,
Reaction Rate Theory and Rare Events
(
Elsevier
,
2017
).
5.
P.
Tiwary
and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
2839
(
2016
).
6.
P.
Tiwary
and
B. J.
Berne
,
J. Chem. Phys.
145
,
054113
(
2016
).
7.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
,
Ann. Rev. Phys. Chem.
67
,
159
(
2016
).
8.
J.
McCarty
and
M.
Parrinello
,
J. Chem. Phys.
147
,
204109
(
2017
).
9.
M. M.
Sultan
and
V. S.
Pande
,
J. Chem. Theory Comput.
13
,
2440
(
2017
).
10.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
11.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
,
J. Chem. Phys.
125
,
024106
(
2006
).
12.
S. V.
Krivov
,
J. Chem. Theory Comput.
9
,
135
(
2012
).
13.
P.
Tiwary
and
A.
van de Walle
,
Multiscale Materials Modeling for Nanomechanics
(
Springer
,
2016
), pp.
195
221
.
14.
S.
Pressé
,
K.
Ghosh
,
J.
Lee
, and
K. A.
Dill
,
Rev. Mod. Phys.
85
,
1115
(
2013
).
15.
P. D.
Dixit
,
A.
Jain
,
G.
Stock
, and
K. A.
Dill
,
J. Chem. Theory Comput.
11
,
5464
(
2015
).
16.
J. M. L.
Ribeiro
and
P.
Tiwary
, “
Towards achieving efficient and accurate ligand-protein unbinding with deep learning and molecular dynamics through RAVE
,”
J. Chem. Theory Comput.
(to be published).
17.
J. M. L.
Ribeiro
,
P.
Bravo
,
Y.
Wang
, and
P.
Tiwary
,
J. Chem. Phys.
149
,
072301
(
2018
).
18.
P.
Tiwary
and
M.
Parrinello
,
Phys. Rev. Lett.
111
,
230602
(
2013
).
19.
P.
Tiwary
,
V.
Limongelli
,
M.
Salvalaglio
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
E386
(
2015
).
20.
Y.
Wang
,
E.
Papaleo
, and
K.
Lindorff-Larsen
,
eLife
5
,
e17505
(
2016
).
21.
Y.
Wang
,
O.
Valsson
,
P.
Tiwary
,
M.
Parrinello
, and
K.
Lindorff-Larsen
,
J. Chem. Phys.
149
,
072309
(
2018
).
22.
J.
Mondal
,
N.
Ahalawat
,
S.
Pandit
,
L. E.
Kay
, and
P.
Vallurupalli
,
PLoS Comput. Biol.
14
,
e1006180
(
2018
).
23.
V. A.
Feher
,
J. D.
Durrant
,
A. T.
Van Wart
, and
R. E.
Amaro
,
Curr. Opt. Struct. Biol.
25
,
98
(
2014
).
24.
V. A.
Feher
,
E. P.
Baldwin
, and
F. W.
Dahlquist
,
Nat. Struct. Mol. Biol.
3
,
516
(
1996
).
25.
L.
Zheng
,
M.
Chen
, and
W.
Yang
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
20227
(
2008
).
26.
F.
Noé
and
F.
Nüske
,
Multiscale Model. Simul.
11
,
635
(
2013
).
27.
F.
Nüske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S. J. S.
Mey
, and
F.
Noé
,
J. Chem. Theory Comput.
10
,
1739
(
2014
).
28.
P.
Tiwary
and
B. J.
Berne
,
J. Chem. Phys.
147
,
152701
(
2017
).
29.
J.
Pfaendtner
and
M.
Bonomi
,
J. Chem. Theory Comput.
11
,
5062
(
2015
).
30.
O.
Valsson
and
M.
Parrinello
,
Phys. Rev. Lett.
113
,
090601
(
2014
).
31.
P.
Tiwary
and
M.
Parrinello
,
J. Phys. Chem. B
119
,
736
(
2014
).
32.
R. A.
Copeland
,
Nat. Rev. Drug Discovery
15
,
87
(
2016
).
33.
A.
Dickson
,
P.
Tiwary
, and
H.
Vashisth
,
Curr. Top. Med. Chem.
17
,
2626
(
2017
).
34.
A. C.
Pan
,
D. W.
Borhani
,
R. O.
Dror
, and
D. E.
Shaw
,
Drug Discovery Today
18
,
667
(
2013
).
35.
J. M. L.
Ribeiro
,
S.-T.
Tsai
,
D.
Pramanik
,
Y.
Wang
, and
P.
Tiwary
, preprint arXiv:1809.04540 (
2018
).
36.
S. D.
Lotz
and
A.
Dickson
,
J. Am. Chem. Soc.
140
,
618
(
2018
).
37.
P.
Tiwary
,
J.
Mondal
, and
B. J.
Berne
,
Sci. Adv.
3
,
e1700014
(
2017
).
38.
P.
Tiwary
,
J. Phys. Chem. B
121
,
10841
(
2017
).
39.
K. L.
Fleming
,
P.
Tiwary
, and
J.
Pfaendtner
,
J. Phys. Chem. A
120
,
299
(
2016
).
40.
C. D.
Fu
,
L. F. L.
Oliveira
, and
J.
Pfaendtner
,
J. Chem. Phys.
146
,
014108
(
2017
).
41.
R.
Casasnovas
,
V.
Limongelli
,
P.
Tiwary
,
P.
Carloni
, and
M.
Parrinello
,
J. Am. Chem. Soc.
139
,
4780
(
2017
).
42.
M.
Salvalaglio
,
P.
Tiwary
, and
M.
Parrinello
,
J. Chem. Theory Comput.
10
,
1420
(
2014
).
43.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
44.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
45.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
46.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).

Supplementary Material

You do not currently have access to this content.