We investigate bulk structural properties of tetravalent associating particles within the framework of classical density functional theory, building upon Wertheim’s thermodynamic perturbation theory. To this end, we calculate density profiles within an effective test-particle geometry and compare to radial distribution functions obtained from computer simulations. We demonstrate that a modified version of the functional proposed by Yu and Wu [J. Chem. Phys. 116, 7094 (2002)] based on fundamental measure theory for hard spheres produces accurate results, although the functional does not satisfy the exactly known low-density limit. In addition, at low temperatures where particles start to form an amorphous tetrahedral network, quantitative differences between simulations and theory emerge due to the absence of geometrical information regarding the patch arrangement in the latter. Indeed, here we find that the theory fits better to simulations of the floating-bond model [E. Zaccarelli et al., J. Chem. Phys. 127, 174501 (2007)], which exhibits a weaker tetrahedral order due to more flexible bonds between particles. We also demonstrate that another common density functional approach by Segura et al. [Mol. Phys. 90, 759 (1997)] fails to capture fundamental structural properties.

1.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
9889
(
2003
).
2.
Z.
Zhang
and
S. C.
Glotzer
,
Nano Lett.
4
,
1407
1413
(
2004
).
3.
A. B.
Pawar
and
I.
Kretzschmar
,
Macromol. Rapid Commun.
31
,
150
168
(
2010
).
4.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
,
Phys. Rev. Lett.
97
(
16
),
168301
(
2006
).
5.
D.
de las Heras
,
J. M.
Tavares
, and
M. M. T.
da Gama
,
J. Chem. Phys.
134
,
104904
(
2011
).
6.
J.
Russo
,
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. M.
Telo da Gama
, and
F.
Sciortino
,
Phys. Rev. Lett.
106
(
8
),
085703
(
2011
).
7.
F.
Smallenburg
and
F.
Sciortino
,
Nat. Phys.
9
,
554
(
2013
).
8.
F.
Sciortino
and
E.
Zaccarelli
,
Curr. Opin. Colloid Interface Sci.
30
,
90
96
(
2017
).
9.
S.
Biffi
,
R.
Cerbino
,
F.
Bomboi
,
E. M.
Paraboschi
,
R.
Asselta
,
F.
Sciortino
, and
T.
Bellini
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
15633
15637
(
2013
).
10.
L.
Rovigatti
,
F.
Bomboi
, and
F.
Sciortino
,
J. Chem. Phys.
140
,
154903
(
2014
).
11.
B.
Ruzicka
,
E.
Zaccarelli
,
L.
Zulian
,
R.
Angelini
,
M.
Sztucki
,
A.
Moussaid
,
T.
Narayanan
, and
F.
Sciortino
,
Nat. Mater.
10
,
56
(
2011
).
12.
R. P.
Sear
,
J. Chem. Phys.
111
,
4800
(
1999
).
13.
H.
Liu
,
S. K.
Kumar
, and
F.
Sciortino
,
J. Chem. Phys.
127
,
084902
(
2007
).
14.
15.
F.
Roosen-Runge
,
F.
Zhang
,
F.
Schreiber
, and
R.
Roth
,
Sci. Rep.
4
,
7016
(
2014
).
16.
D.
Soraruf
,
F.
Roosen-Runge
,
M.
Grimaldo
,
F.
Zanini
,
R.
Schweins
,
T.
Seydel
,
F.
Zhang
,
R.
Roth
,
M.
Oettel
, and
F.
Schreiber
,
Soft Matter
10
,
894
(
2014
).
17.
H. C.
Andersen
,
J. Chem. Phys.
59
,
4714
4725
(
1973
).
18.
I.
Nezbeda
,
J.
Kolafa
, and
Y. V.
Kalyuzhnyi
,
Mol. Phys.
68
,
143
160
(
1989
).
19.
D.
Ghongasi
and
W.
Chapman
,
Mol. Phys.
79
,
291
(
1993
).
20.
G. N. I.
Clark
,
A. J.
Haslam
,
A.
Galindo
, and
G.
Jackson
,
Mol. Phys.
104
,
3561
3581
(
2006
).
21.
M.
Wertheim
,
J. Stat. Phys.
35
,
19
34
(
1984
).
22.
M.
Wertheim
,
J. Stat. Phys.
35
,
35
47
(
1984
).
23.
M.
Wertheim
,
J. Stat. Phys.
42
,
459
476
(
1986
).
24.
M.
Wertheim
,
J. Stat. Phys.
42
,
477
492
(
1986
).
25.
G.
Jackson
,
W.
Chapman
, and
K.
Gubbins
,
Mol. Phys.
65
,
1
31
(
1988
).
26.
E.
Bianchi
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
,
J. Chem. Phys.
128
,
144504
(
2008
).
27.
F.
Sciortino
and
E.
Zaccarelli
,
Curr. Opin. Solid State Mater. Sci.
15
,
246
253
(
2011
), functional Gels and Membranes.
28.
P.
Teixeira
and
J.
Tavares
,
Curr. Opin. Colloid Interface Sci.
30
,
16
24
(
2017
).
29.
E.
Kierlik
and
M. L.
Rosinberg
,
J. Chem. Phys.
97
,
9222
9239
(
1992
).
30.
B. D.
Marshall
and
W. G.
Chapman
,
J. Chem. Phys.
138
,
044901
(
2013
).
32.
A.
Haghmoradi
,
L.
Wang
, and
W. G.
Chapman
,
J. Phys.: Condens. Matter
28
,
244009
(
2016
).
33.
C. J.
Segura
,
W. G.
Chapman
, and
K. P.
Shukla
,
Mol. Phys.
90
,
759
(
1997
).
34.
P.
Tarazona
,
Phys. Rev. A
31
(
4
),
2672
2679
(
1985
).
35.
Y. X.
Yu
and
J.
Wu
,
J. Chem. Phys.
116
,
7094
7103
(
2002
).
36.
37.
R.
Roth
,
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
38.
N.
Gnan
,
D.
de las Heras
,
J. M.
Tavares
,
M. M. T.
da Gama
, and
F.
Sciortino
,
J. Chem. Phys.
137
,
084704
(
2012
).
39.
A.
Oleksy
and
P. I. C.
Teixeira
,
Phys. Rev. E
91
(
1
),
012301
(
2015
).
40.
M. R.
Fries
,
D.
Stopper
,
M. K.
Braun
,
A.
Hinderhofer
,
F.
Zhang
,
R. M. J.
Jacobs
,
M. W. A.
Skoda
,
H.
Hansen-Goos
,
R.
Roth
, and
F.
Schreiber
,
Phys. Rev. Lett.
119
(
22
),
228001
(
2017
).
41.
A.
Bymaster
,
A.
Dominik
, and
W. G.
Chapman
,
J. Phys. Chem. C
111
,
15823
15831
(
2007
).
42.
J.
Hughes
,
E. J.
Krebs
, and
D.
Roundy
,
J. Chem. Phys.
138
,
024509
(
2013
).
43.
L. Y.
Wang
,
F.
Gu
,
H. J.
Wang
, and
Z. L.
Sun
,
J. Phys. Chem. B
121
,
2142
2152
(
2017
).
44.
J. P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Academic Press
,
London
,
2013
).
45.
E.
Zaccarelli
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Chem. Phys.
127
,
174501
(
2007
).
46.
J.
Bleibel
,
M.
Habiger
,
M.
Lütje
,
F.
Hirschmann
,
F.
Roosen-Runge
,
T.
Seydel
,
F.
Zhang
,
F.
Schreiber
, and
M.
Oettel
,
Soft Matter
14
,
8006
(
2018
).
47.
L.
Rovigatti
,
J.
Russo
, and
F.
Romano
,
Eur. Phys. J. E
41
,
59
(
2018
).
48.
P.
Flory
,
J. Am. Chem. Soc.
63
,
3083
3090
(
1941
).
49.
G.
Foffi
and
F.
Sciortino
,
J. Phys. Chem. B
111
,
9702
9705
(
2007
).
50.
J. K.
Percus
,
J. Stat. Phys.
15
,
505
(
1976
).
51.
T. K.
Vanderlick
,
H. T.
Davis
, and
J. K.
Percus
,
J. Chem. Phys.
91
,
7136
7145
(
1989
).
52.
S. C.
Kim
,
M.
Calleja
, and
G.
Rickayzen
,
J. Phys.: Condens. Matter
7
,
8053
8063
(
1995
).
53.
54.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
(
2002
),
12063
12078
(
2002
).
55.
H.
Hansen-Goos
and
R.
Roth
,
J. Phys.: Condens. Matter
18
,
8413
(
2006
).
56.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
57.
J.
Horbach
and
W.
Kob
,
Phys. Rev. B
60
(
5
),
3169
3181
(
1999
).
58.
I.
Saika-Voivod
,
F.
Smallenburg
, and
F.
Sciortino
,
J. Chem. Phys.
139
,
234901
(
2013
).
59.
M.
Dijkstra
and
R.
Evans
,
J. Chem. Phys.
112
,
1449
1456
(
2000
).
60.
E.
Bianchi
,
P.
Tartaglia
,
E.
La Nave
, and
F.
Sciortino
,
J. Phys. Chem. B
111
,
11765
11769
(
2007
).
61.
S.
Roldan-Vargas
,
L.
Rovigatti
, and
F.
Sciortino
,
Soft Matter
13
(
2
),
514
530
(
2017
).
62.
U.
Marconi
and
P.
Tarazona
,
J. Chem. Phys.
110
,
8032
(
1999
).
63.
A. J.
Archer
and
R.
Evans
,
J. Chem. Phys.
121
,
4246
(
2004
).
64.
A. J.
Archer
and
R.
Evans
,
J. Chem. Phys.
147
,
034501
(
2017
).
65.
D.
Stopper
,
R.
Roth
, and
H.
Hansen-Goos
,
J. Chem. Phys.
143
,
181105
(
2015
).
66.
D.
Stopper
,
A. L.
Thorneywork
,
R. P. A.
Dullens
, and
R.
Roth
,
J. Chem. Phys.
148
,
104501
(
2018
).
67.
D.
Stopper
,
R.
Roth
, and
H.
Hansen-Goos
,
J. Phys.: Condens. Matter
28
,
455101
(
2016
).
68.
P.
Tarazona
and
R.
Evans
,
Mol. Phys.
52
,
847
857
(
1984
).
69.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
).
70.
J. A.
Anderson
,
C. D.
Lorenz
, and
A.
Travesset
,
J. Comput. Phys.
227
,
5342
5359
(
2008
).
71.
J.
Glaser
,
T. D.
Nguyen
,
J. A.
Anderson
,
P.
Liu
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
,
Comput. Phys. Commun.
192
,
97
107
(
2015
).
You do not currently have access to this content.