We present a numerical study of the relative solubility of cholesterol in octanol and water. Our calculations allow us to compare the accuracy of the computed values of the excess chemical potential of cholesterol for several widely used water models (SPC, TIP3P, and TIP4P). We compute the excess solvation free energies by means of a cavity-based method [L. Li et al., J. Chem. Phys. 146(21), 214110 (2017)] which allows for the calculation of the excess chemical potential of a large molecule in a dense solvent phase. For the calculation of the relative solubility (“partition coefficient,” log10Po/w) of cholesterol between octanol and water, we use the OPLS/AA force field in combination with the SPC, TIP3P, and TIP4P water models. For all water models studied, our results reproduce the experimental observation that cholesterol is less soluble in water than in octanol. While the experimental value for the partition coefficient is log10Po/w= 3.7, SPC, TIP3P, and TIP4P give us a value of log10Po/w = 4.5, 4.6, and 2.9, respectively. Therefore, although the results for the studied water models in combination with the OPLS/AA force field are acceptable, further work to improve the accuracy of current force fields is needed.

1.
G. L.
Amidon
,
H.
Lennernas
,
V. P.
Shah
, and
J. R.
Crison
, “
A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability
,”
Pharm. Res.
12
,
413
(
1995
).
2.
W. L.
Jorgensen
and
E. M.
Duffy
, “
Prediction of drug solubility from structure
,”
Adv. Drug Delivery Rev.
54
,
355
366
(
2002
).
3.
W. L.
Jorgensen
and
E. M.
Duffy
, “
Prediction of drug solubility from Monte Carlo simulations
,”
Bioorg. Med. Chem. Lett.
10
,
1155
(
2000
).
4.
M. H.
Abraham
and
J.
Le
, “
The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship
,”
J. Pharm. Sci.
88
(
9
),
868
880
(
1999
).
5.
M.
Esmaili
,
S. M.
Ghaffari
,
Z.
Moosavi-Movahedi
,
M. S.
Atri
,
A.
Sharifizadeh
,
M.
Farhadi
,
R.
Yousefi
,
J.-M.
Chobert
,
T.
Haertlé
, and
A. A.
Moosavi-Movahedi
, “
Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application
,”
LWT–Food Sci. Technol.
44
(
10
),
2166
2172
(
2011
).
6.
J.
Gajdoš
,
K.
Galić
,
Ž.
Kurtanjek
, and
N.
Ciković
, “
Gas permeability and DSC characteristics of polymers used in food packaging
,”
Polym. Test.
20
(
1
),
49
57
(
2000
).
7.
K. U. G.
Raju
and
G.
Atkinson
, “
Thermodynamics of ‘scale’ mineral solubitities. III. Calcium sulfate in aqueous NaCl
,”
J. Chem. Eng. Data
35
,
361
(
1990
).
8.
T.
Chen
,
A.
Neville
, and
M.
Yuan
, “
Calcium carbonate scale formation-assessing the initial stages of precipitation and deposition
,”
J. Pet. Sci. Eng.
46
,
185
194
(
2005
).
9.
O. C.
Mullins
,
A. E.
Pomerantz
,
J. Y.
Zuo
, and
C.
Dong
, “
Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
325
345
(
2014
).
10.
J. R.
Espinosa
,
J. M.
Young
,
H.
Jiang
,
D.
Gupta
,
C.
Vega
,
E.
Sanz
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
, “
On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures
,”
J. Chem. Phys.
145
(
15
),
154111
(
2016
).
11.
H. M.
Manzanilla-Granados
,
H.
Saint-Martín
,
R.
Fuentes-Azcatl
, and
J.
Alejandre
, “
Direct coexistence methods to determine the solubility of salts in water from numerical simulations. Test case NaCl
,”
J. Phys. Chem. B
119
(
26
),
8389
8396
(
2015
).
12.
A. L.
Benavides
,
J. L.
Aragones
, and
C.
Vega
, “
Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
,”
J. Chem. Phys.
144
,
124504
(
2016
).
13.
M.
Lisal
,
W. R.
Smith
, and
J.
Kolafa
, “
Molecular simulations of aqueous electrolyte solubility. I. The expanded ensemble osmotic molecular dynamics method for the solution phase
,”
J. Phys. Chem. B
109
,
12956
(
2005
).
14.
F.
Moucka
,
M.
Lisal
,
J.
Skvor
,
J.
Jirsak
,
I.
Nezbeda
, and
W. R.
Smith
, “
Molecular simulation of aqueous electrolyte solubility. II. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl
,”
J. Phys. Chem. B
115
(
24
),
7849
7861
(
2011
).
15.
I.
Nezbeda
,
F.
Moučka
, and
W. R.
Smith
, “
Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility
,”
Mol. Phys.
114
(
11
),
1665
1690
(
2016
).
16.
F.
Moučka
,
J.
Kolafa
,
M.
Lísal
, and
W. R.
Smith
, “
Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl2, antarcticite, and sinjarite
,”
J. Chem. Phys.
148
(
22
),
222832
(
2018
).
17.
A.
Ghoufi
and
G.
Maurin
, “
Hybrid Monte Carlo simulations combined with a phase mixture model to predict the structural transitions of a porous metal-organic framework material upon adsorption of guest molecules
,”
J. Phys. Chem. C
114
(
14
),
6496
6502
(
2010
).
18.
L. J.
Dunne
and
G.
Manos
, “
Statistical mechanics of binary mixture adsorption in metal-organic frameworks in the osmotic ensemble
,”
Philos. Trans. R. Soc., A
376
,
20170151
(
2017
).
19.
F.-X.
Coudert
, “
The osmotic framework adsorbed solution theory: Predicting mixture coadsorption in flexible nanoporous materials
,”
Phys. Chem. Chem. Phys.
12
(
36
),
10904
10913
(
2010
).
20.
Z.
Mester
and
A. Z.
Panagiotopoulos
, “
Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations
,”
J. Chem. Phys.
142
(
4
),
044507
(
2015
).
21.
E.
Sanz
and
C.
Vega
, “
Solubility of KF and NaCl in water by molecular simulation
,”
J. Chem. Phys.
126
,
014507
(
2007
).
22.
M.
Ferrario
,
G.
Ciccotti
,
E.
Spohr
,
T.
Cartailler
, and
P.
Turq
, “
Solubility of KF in water by molecular dynamics using the Kirkwood integration method
,”
J. Chem. Phys.
117
,
4947
(
2002
).
23.
L.
Li
,
T.
Totton
, and
D.
Frenkel
, “
Computational methodology for solubility prediction: Application to the sparingly soluble solutes
,”
J. Chem. Phys.
146
(
21
),
214110
(
2017
).
24.
C.
Wand
,
T.
Totton
, and
D.
Frenkel
, “
Addressing hysteresis and slow equilibration issues in cavity-based calculation of chemical potentials
,”
J. Chem. Phys.
149
(
1
),
014105
(
2018
).
25.
D. L.
Mobley
,
C. I.
Bayly
,
M. D.
Coope
,
M. R.
Shir
, and
K. A.
Di
, “
Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations
,”
J. Chem. Theory Comput.
5
,
350
358
(
2009
).
26.
G.
Koenig
,
M. T.
Reetz
, and
W.
Thiel
, “
1-butanol as a solvent for efficient extraction of polar compounds from aqueous medium: Theoretical and practical aspects
,”
J. Phys. Chem. B
122
,
6975
6988
(
2018
).
27.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
(
1963
).
28.
T.
Steinbrecher
,
D. L.
Mobley
, and
D. A.
Case
, “
Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations
,”
J. Chem. Phys.
127
(
21
),
214108
(
2007
).
29.
T.
Simonson
, “
Free energy of particle insertion
,”
Mol. Phys.
80
,
441
(
1993
).
30.
T. C.
Beutler
,
A. E.
Mark
,
R. C.
van Schaik
,
P. R.
Gerber
, and
W. F.
Van Gunsteren
, “
Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations
,”
Chem. Phys. Lett.
222
(
6
),
529
539
(
1994
).
31.
M.
Zacharias
,
T.
Straatsma
, and
J.
McCammon
, “
Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration
,”
J. Chem. Phys.
100
(
12
),
9025
9031
(
1994
).
32.
J.
Kolafa
, “
Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field
,”
J. Chem. Phys.
145
(
20
),
204509
(
2016
).
33.
H.
Jiang
,
Z.
Mester
,
O. A.
Moultos
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
, “
Thermodynamic and transport properties of H2O + NaCl from polarizable force fields
,”
J. Chem. Theory Comput.
11
(
8
),
3802
3810
(
2015
).
34.
Z.
Mester
and
A. Z.
Panagiotopoulos
, “
Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations
,”
J. Chem. Phys.
143
(
4
),
044505
(
2015
).
35.
F.
Moucka
,
I.
Nezbeda
, and
W. R.
Smith
, “
Chemical potentials, activity coefficients, and solubility in aqueous NaCl solutions: Prediction by polarizable force fields
,”
J. Chem. Theory Comput.
11
(
4
),
1756
1764
(
2015
).
36.
J. L.
Aragones
,
E.
Sanz
, and
C.
Vega
, “
Solubility of NaCl in water by molecular simulation revisited
,”
J. Chem. Phys.
136
(
24
),
244508
(
2012
).
37.
A. S.
Paluch
,
S.
Jayaraman
,
J. K.
Shah
, and
E. J.
Maginn
, “
A method for computing the solubility limit of solids: Application to sodium chloride in water and alcohols
,”
J. Chem. Phys.
133
(
12
),
124504
(
2010
).
38.
I. S.
Joung
and
T. E.
Cheatham
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
(
30
),
9020
9041
(
2008
).
39.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
(
1987
).
40.
N.
Habibi
,
S. Z. M.
Hashim
,
A.
Norouzi
, and
M. R.
Samian
, “
A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli
,”
BMC Bioinf.
15
(
1
),
134
(
2014
).
41.
H. K.
Hansen
,
C.
Riverol
, and
W. E.
Acree
, “
Solubilities of anthracene, fluoranthene and pyrene in organic solvents: Comparison of calculated values using UNIFAC and modified UNIFAC (Dortmund) models with experimental data and values using the mobile order theory
,”
Can. J. Chem. Eng.
78
(
6
),
1168
1174
(
2000
).
42.
A.
Jouyban
,
A.
Shayanfar
, and
W. E.
Acree
, “
Solubility prediction of polycyclic aromatic hydrocarbons in non-aqueous solvent mixtures
,”
Fluid Phase Equilib.
293
(
1
),
47
58
(
2010
).
43.
A.
Shayanfar
,
S. H.
Eghrary
,
F.
Sardari
,
W. E.
Acree
, Jr.
, and
A.
Jouyban
, “
Solubility of anthracene and phenanthrene in ethanol +2, 2, 4-trimethylpentane mixtures at different temperatures
,”
J. Chem. Eng. Data
56
(
5
),
2290
2294
(
2011
).
44.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
London
,
1996
).
45.
D.
Frenkel
and
A. J. C.
Ladd
, “
New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres
,”
J. Chem. Phys.
81
,
3188
(
1984
).
46.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
, “
Determination of phase diagrams via computer simulation: Methodology and applications to water, electrolytes and proteins
,”
J. Phys.: Condens. Matter
20
(
15
),
153101
(
2008
).
47.
J. L.
Aragones
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
Calculation of the melting point of alkali halides by means of computer simulations
,”
J. Chem. Phys.
137
(
10
),
104507
(
2012
).
48.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
,
245
(
1976
).
49.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
50.
B.
Chen
and
J. I.
Siepmann
, “
Partitioning of alkane and alcohol solutes between water and (dry or wet) 1-octanol
,”
J. Am. Chem. Soc.
122
(
27
),
6464
6467
(
2000
).
51.
E.
Baka
,
J. E. A.
Comer
, and
K.
Takács-Novák
, “
Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound
,”
J. Pharm. Biomed. Anal.
46
(
2
),
335
341
(
2008
).
52.
J.
Alsenz
and
M.
Kansy
, “
High throughput solubility measurement in drug discovery and development
,”
Adv. Drug Delivery Rev.
59
(
7
),
546
567
(
2007
).
53.
N. M.
Garrido
,
A. J.
Queimada
,
M.
Jorge
,
E. A.
Macedo
, and
I. G.
Economou
, “
1-octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies
,”
J. Chem. Theory Comput.
5
(
9
),
2436
2446
(
2009
).
54.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
(
1996
).
55.
H.
Berendsen
,
J.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
,
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
,
Dorderecht
,
1982
), p.
331
.
56.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
57.
W.
Kuliga
,
M.
Pasenkiewicz-Gierulab
, and
T.
Rog
, “
Cis and trans unsaturated phosphatidylcholine bilayers: A molecular dynamics simulation study
,”
Chem. Phys. Lipids
195
,
12
20
(
2016
).
58.
W.
Kulig
,
H.
Mikkolainen
,
A.
Olyska
,
P.
Jurkiewicz
,
L.
Cwiklik
,
M.
Hof
,
I.
Vattulainen
,
P.
Jungwirth
, and
T.
Rog
, “
Bobbing of oxysterols: Molecular mechanism for translocation of tail-oxidized sterols through biological membranes
,”
J. Phys. Chem. Lett.
9
(
5
),
1118
1123
(
2018
).
59.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
,
19663
19688
(
2011
).
60.
S.
Baluja
and
K. V.
Chavda
, “
Prediction of solubility parameters of cholesterol in some organic solvents
,”
Int. J. Pharm., Chem. Biol. Sci.
5
,
171
176
(
2015
), available at http://www.ijpcbs.com/files/volume5-1-2015/19.pdf.
61.
M. E.
Haberland
and
J. A.
Reynolds
, “
Self-association of cholesterol in aqueous solution
,”
Proc. Natl. Acad. Sci. U. S. A.
70
(
8
),
2313
2316
(
1973
).
62.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
2500
(
1986
).
63.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
64.
L.
Verlet
, “
Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
65.
66.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
McGraw-Hill
,
New York
,
1981
).
67.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
(
1977
).
68.
A. W.
Adamson
and
A. P.
Gast
,
Physical Chemistry of Surfaces
(
Wiley-Interscience
,
New York
,
1997
).
69.
J.
Hruby
,
V.
Vins
,
R.
Mares
,
J.
Hykl
, and
J.
Kalová
, “
Surface tension of supercooled water: No inflection point down to −25° C
,”
J. Phys. Chem. Lett.
5
(
3
),
425
428
(
2014
).
70.
C.
Vega
and
E.
de Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
,
154707
(
2007
).
71.
H. A.
Lorentz
, “
Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase
,”
Ann. Phys.
248
(
1
),
127
136
(
1881
).
You do not currently have access to this content.