We report equilibrium molecular simulation data for the classical Lennard-Jones (LJ) model, covering all thermodynamic states where the crystal is stable, as well as fluid states near coexistence with the crystal; both fcc and hcp polymorphs are considered. These data are used to compute coexistence lines and triple points for equilibrium among the fcc, hcp, and fluid phases. All results are obtained with very high accuracy and precision such that coexistence conditions are obtained with one to two significant figures more than previously reported. All properties are computed in the limit of an infinite cutoff radius of the LJ potential and in the limit of an infinite number of atoms; furthermore, the effect of vacancy defects on the free energy of the crystals is included. Data are fit to a semi-empirical equation of state to within their estimated precision, and convenient formulas for the thermodynamic and coexistence properties are provided. Of particular interest is the liquid-vapor-fcc triple point temperature, which we compute to be 0.694 55 ± 0.000 02 (in LJ units).

1.
M.
Thol
,
G.
Rutkai
,
A.
Köster
,
R.
Lustig
,
R.
Span
, and
J.
Vrabec
, “
Equation of state for the Lennard-Jones fluid
,”
J. Phys. Chem. Ref. Data
45
,
023101
(
2016
).
2.
M. A.
van der Hoef
, “
Free energy of the Lennard-Jones solid
,”
J. Chem. Phys.
113
,
8142
(
2000
).
3.
M. A.
Barroso
and
A. L.
Ferreira
, “
Solid–fluid coexistence of the Lennard-Jones system from absolute free energy calculations
,”
J. Chem. Phys.
116
,
7145
(
2002
).
4.
M. A.
Van der Hoef
, “
Gas–solid coexistence of the Lennard-Jones system
,”
J. Chem. Phys.
117
,
5092
(
2002
).
5.
D. M.
Heyes
and
A. C.
Brańka
, “
The Lennard-Jones melting line and isomorphism
,”
J. Chem. Phys.
143
,
234504
(
2015
).
6.
A.
Köster
,
P.
Mausbach
, and
J.
Vrabec
, “
Premelting, solid-fluid equilibria, and thermodynamic properties in the high density region based on the Lennard-Jones potential
,”
J. Chem. Phys.
147
,
144502
(
2017
).
7.
A.
Travesset
, “
Phase diagram of power law and Lennard-Jones systems: Crystal phases
,”
J. Chem. Phys.
141
,
164501
(
2014
).
8.
C.
Calero
,
C.
Knorowski
, and
A.
Travesset
, “
Determination of anharmonic free energy contributions: Low temperature phases of the Lennard-Jones system
.”
J. Chem. Phys.
144
,
124102
(
2016
).
9.
H.
Adidharma
and
S. P.
Tan
, “
Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30
,”
J. Chem. Phys.
145
,
014503
(
2016
).
10.
W. G.
Hoover
,
S. G.
Gray
, and
K. W.
Johnson
, “
Thermodynamic properties of the fluid and solid phases for inverse power potential
,”
J. Chem. Phys.
55
,
1128
1136
(
1971
).
11.
F. H.
Stillinger
, “
Lattice sums and their phase diagram implications for the classical Lennard-Jones model
,”
J. Chem. Phys.
115
,
5208
5212
(
2001
).
12.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
, International Series of Monographs on Physics (
Clarendon Press
,
1954
).
13.
M. T.
Dove
,
Introduction to Lattice Dynamics
(
Cambridge University Press
,
New York
,
2005
).
14.
T. B.
Tan
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Efficient calculation of temperature dependence of solid-phase free energies by overlap sampling coupled with harmonically targeted perturbation
,”
J. Chem. Phys.
133
,
134104
(
2010
).
15.
S. G.
Moustafa
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Harmonically assisted methods for computing the free energy of classical crystals by molecular simulation: A comparative study
,”
J. Chem. Theory Comput.
13
,
825
834
(
2017
).
16.
S. G.
Moustafa
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Very fast averaging of thermal properties of crystals by molecular simulation
,”
Phys. Rev. E
92
,
043303
(
2015
).
17.
A. J.
Schultz
,
S. G.
Moustafa
,
W.
Lin
,
S. J.
Weinstein
, and
D. A.
Kofke
, “
Reformulation of ensemble averages via coordinate mapping
,”
J. Chem. Theory Comput.
12
,
1491
1498
(
2016
).
18.
S. G.
Moustafa
,
A. J.
Schultz
,
E.
Zurek
, and
D. A.
Kofke
, “
Accurate and precise ab initio anharmonic free-energy calculations for metallic crystals: Application to hcp Fe at high temperature and pressure
,”
Phys. Rev. B
96
,
014117
(
2017
).
19.
W.
Swope
and
H.
Andersen
, “
Thermodynamics, statistical thermodynamics, and computer simulation of crystals with vacancies and interstitials
,”
Phys. Rev. A
46
,
4539
4548
(
1992
).
20.
A.
Purohit
,
A.
Schultz
,
S.
Moustafa
,
J.
Errington
, and
D.
Kofke
, “
Free energy and concentration of crystalline vacancies by molecular simulation
,”
Mol. Phys.
116
,
3027
(
2018
).
21.
E.
Mason
and
T.
Spurling
,
The Virial Equation of State
(
Pergamon Press
,
Oxford
,
1969
).
22.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
London
,
2006
).
23.
A. J.
Masters
, “
Virial expansions
,”
J. Phys.: Condens. Matter
20
,
283102
(
2008
).
24.
C.
Feng
,
A. J.
Schultz
,
V.
Chaudhary
, and
D. A.
Kofke
, “
Eighth to sixteenth virial coefficients of the Lennard-Jones model
,”
J. Chem. Phys.
143
,
044504
(
2015
).
25.
T. B.
Tan
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Virial coefficients, equation of state, and solid-fluid coexistence for the soft sphere model
,”
Mol. Phys.
109
,
123
132
(
2011
).
26.
N. S.
Barlow
,
A. J.
Schultz
,
S. J.
Weinstein
, and
D. A.
Kofke
, “
An asymptotically consistent approximant method with application to soft- and hard-sphere fluids
,”
J. Chem. Phys.
137
,
204102
(
2012
).
27.
R. J.
Wheatley
, “
Calculation of high-order virial coefficients with applications to hard and soft spheres
,”
Phys. Rev. Lett.
110
,
200601
(
2013
).
28.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
San Diego
,
2002
).
29.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
30.
A.
Lotfi
,
J.
Vrabec
, and
J.
Fischer
, “
Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method
,”
Mol. Phys.
76
,
1319
1333
(
1992
).
31.
D. A.
Kofke
, “
Getting the most from molecular simulation
,”
Mol. Phys.
102
,
405
420
(
2004
).
32.
D. A.
Kofke
, “
Free energy methods in molecular simulation
,”
Fluid Phase Equilib.
228
,
41
48
(
2005
).
33.
W. G.
Hoover
, “
Entropy for small classical crystals
,”
J. Chem. Phys.
49
,
1981
1982
(
1968
).
34.
L.
Gómoez
,
A.
Dobry
,
C.
Geuting
,
H. T.
Diep
, and
L.
Brukovsky
, “
Dislocation lines as the precursor of the melting of crystalline solids observed in Monte Carlo simulations
,”
Phys. Rev. Lett.
90
,
095701
(
2003
).
35.
S.
Pronk
and
D.
Frenkel
, “
Point defects in hard-sphere crystals
,”
J. Phys. Chem. B
105
,
6722
6727
(
2001
).
36.
R.
Agrawal
and
D. A.
Kofke
, “
Thermodynamic and structural properties of model systems at solid-fluid coexistence. II. Melting and sublimation of the Lennard-Jones system
,”
Mol. Phys.
85
,
43
59
(
1995
).
37.
E. A.
Mastny
and
J. J.
de Pablo
, “
Melting line of the Lennard-Jones system, infinite size, and full potential
,”
J. Chem. Phys.
127
,
104504
(
2007
).
38.
J. R.
Morris
and
X.
Song
, “
The melting lines of model systems calculated from coexistence simulations
,”
J. Chem. Phys.
116
,
9352
9358
(
2002
).
39.
A.
Ahmed
and
R. J.
Sadus
, “
Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids
,”
J. Chem. Phys.
131
,
174504
(
2009
).
40.
G. C.
McNeil-Watson
and
N. B.
Wilding
, “
Freezing line of the Lennard-Jones fluid: A phase switch Monte Carlo study
,”
J. Chem. Phys.
124
,
064504
(
2006
).
41.
J. R.
Errington
, “
Solid–liquid phase coexistence of the Lennard-Jones system through phase-switch Monte Carlo simulation
,”
J. Chem. Phys.
120
,
3130
3141
(
2004
).
42.
D. M.
Eike
,
J. F.
Brennecke
, and
E. J.
Maginn
, “
Toward a robust and general molecular simulation method for computing solid-liquid coexistence
,”
J. Chem. Phys.
122
,
014115
(
2005
).
43.
J.
Johnson
,
J.
Zollweg
, and
K.
Gubbins
, “
The Lennard-Jones equation of state revisited
,”
Mol. Phys.
78
,
591
618
(
1993
).
44.
U. R.
Pedersen
, “
Direct calculation of the solid-liquid Gibbs free energy difference in a single equilibrium simulation
,”
J. Chem. Phys.
139
,
104102
(
2013
).
45.
J. M. G.
Sousa
,
A. L.
Ferreira
, and
M. A.
Barroso
, “
Determination of the solid-fluid coexistence of the n − 6 Lennard-Jones system from free energy calculations
,”
J. Chem. Phys.
136
,
174502
(
2012
).
46.
J.
Kolafa
and
I.
Nezbeda
, “
The Lennard-Jones fluid: An accurate analytic and theoretically-based equation of state
,”
Fluid Phase Equilib.
100
,
1
34
(
1994
).
47.
V. R.
Heng
,
M.
Nayhouse
,
M.
Crose
,
A.
Tran
, and
G.
Orkoulas
, “
Communication: Direct determination of triple-point coexistence through cell model simulation
,”
J. Chem. Phys.
137
,
141101
(
2012
).
48.
B.
Chen
,
J. I.
Siepmann
, and
M. L.
Klein
, “
Direct Gibbs ensemble Monte Carlo simulations for solid-vapor phase equilibria: Applications to Lennard-Jonesium and carbon dioxide
,”
J. Phys. Chem. B
105
,
9840
9848
(
2001
).
49.
A. J. C.
Ladd
and
L. V.
Woodcock
, “
Interfacial and co-existence properties of the Lennard-Jones system at the triple point
,”
Mol. Phys.
36
,
611
619
(
1978
).
50.
J.-P.
Hansen
and
L.
Verlet
, “
Phase transitions of the Lennard-Jones system
,”
Phys. Rev.
184
,
151
161
(
1969
).

Supplementary Material

You do not currently have access to this content.