The valence shell photoelectron spectrum of ICN has been simulated using the equation-of-motion coupled-cluster method to calculate the ionization energies and the norms of the Dyson orbitals to describe the intensity of the photoelectron bands. The simulated spectrum not only reproduces the position and intensity of the four main bands observed in the experimental photoelectron spectrum, but the vibronic structure present in the individual photoelectron bands is also reproduced to a reasonable extent. The agreement between the experimental and simulated vibronic structures at higher energies corresponding to the à and B̃ states is particularly noteworthy. Additionally, the photoionization cross section and asymmetry parameter have been calculated for the ionization of four outermost valence molecular orbitals in the photon energy range of 0–50 eV. The computed asymmetry parameters are found to provide a qualitative description of the corresponding experimental measurements. The shape-resonance seen in the experimental asymmetry parameters and the trends seen in the calculated cross section for the four ionization channels have been explained by the partial wave analysis of the contribution of the individual angular momentum channels to the photoelectron.

1.
J. A. R.
Samson
, in
Corpuscles and Radiation in Matter I
, edited by
W.
Mehlhorn
(
Springer-Verlag
,
Berlin
,
1982
), p.
123
.
2.
H.
Siegbahn
and
L.
Karlsson
, in
Corpuscles and Radiation in Matter I
, edited by
W.
Mehlhorn
(
Springer-Verlag
,
Berlin
,
1982
), p.
215
.
3.
U.
Becker
,
J. Electron Spectrosc. Relat. Phenom.
75
,
23
(
1995
).
4.
T. A.
Carlson
,
Annu. Rev. Phys. Chem.
26
,
211
(
1975
).
5.
K.
Wang
and
V.
Mckoy
,
Annu. Rev. Phys. Chem.
46
,
275
(
1995
).
6.
D. M.
Neumark
,
Annu. Rev. Phys. Chem.
52
,
255
(
2001
).
7.
L. M.
Thompson
,
C. C.
Jarrold
, and
H. P.
Hratchian
,
J. Chem. Phys.
146
,
104301
(
2017
).
8.
H.
Farrokhpour
and
M.
Ghandehari
,
J. Phys. Chem. B
117
,
6027
(
2013
).
9.
E.
Pluharova
,
P.
Slavicek
, and
P.
Jungwirth
,
Acc. Chem. Res.
48
,
1209
(
2015
).
10.
K. D.
Fulfer
,
D.
Hardy
,
A. A.
Aguilar
, and
E. D.
Poliakoff
,
J. Chem. Phys.
142
,
224310
(
2015
).
11.
F.
Abyar
and
H.
Farrokhpour
,
J. Photochem. Photobiol. B
160
,
11
(
2016
).
12.
J.
Simons
, “
The Renner-Teller effect and the role of electronically degenerate states in molecular ions
,” in
Photoionization and Photodetachment
, Part II of Advanced Series in Physical Chemistry, edited by
C.-Y.
Ng
(
World Scientific Publishing Co.
,
Singapore
,
2000
), Vol. 10.
13.
M. N. R.
Ashfold
,
M. T.
Macpherson
, and
J. P.
Simons
, in “
Photochemistry and spectroscopy of simple polyatomic molecules in the vacuum ultraviolet
,” in
Topics in Current Chemistry
(
Springer
,
Heidelberg
, in press), and references cited therein,
Wiley
,
New York
.
14.
K.
Kanda
 et al,
Chem. Phys.
218
,
199
(
1997
).
15.
K.
Kanda
,
M.
Kono
,
K.
Shobatake
, and
T.
Ibuki
,
J. Electron Spectrosc. Relat. Phenom.
144-147
,
139
(
2005
).
16.
W. M.
Gelbart
,
Annu. Rev. Phys. Chem.
28
,
323
(
1977
).
17.
M.
Macpherson
and
J. P.
Simons
,
J. Chem. Soc., Faraday Trans. 2
75
,
1572
(
1979
).
18.
J. P.
Simons
and
P. W.
Tasker
,
Mol. Phys.
27
,
1691
(
1974
).
19.
J. M.
Hollas
and
T. A.
Sutherley
,
Mol. Phys.
22
,
213
(
1971
).
20.
21.
J.
Eland
,
P.
Baltzer
,
L.
Karlsson
, and
B.
Wannberg
,
Chem. Phys.
212
,
457
(
1996
).
22.
D. C.
Wang
,
F. T.
Chau
,
E. P. F.
Lee
,
A. K.
Leung
, and
J. M.
Dyke
,
Mol. Phys.
93
,
995
(
1998
).
23.
A. J.
Yencha
,
A. E.
Malins
, and
G. C.
King
,
Chem. Phys. Lett.
392
,
202
(
2004
).
24.
E. M.
Miller
 et al,
J. Chem. Phys.
136
,
044313
(
2012
).
25.
J.
Li
,
H.
Li
, and
Y.
Mo
,
J. Phys. Chem. A
114
,
9973
(
2010
).
26.
D. M. P.
Holland
 et al,
Mol. Phys.
98
,
1939
(
2000
).
27.
M.
Biczysko
and
R.
Tarroni
,
Chem. Phys. Lett.
415
,
223
(
2005
).
28.
S.
Mishra
,
V.
Vallet
, and
W.
Domcke
,
J. Chem. Phys.
124
,
044317
(
2006
).
29.
H.
Köppel
, “
Vibronic coupling effects in spectroscopy and non-adiabatic transitions in molecular photodynamics
,” in
Molecular Quantum Dynamics
, edited by
F.
Gatti
(
Springer
,
2014
).
30.
V. A.
Tran
and
M.
Pernpointner
,
Chem. Phys.
509
,
151
(
2018
).
31.
J.
Eland
,
P.
Baltzer
,
L.
Karlsson
, and
B.
Wannberg
,
Chem. Phys.
222
,
229
(
1997
).
32.
E.
Heilbrönner
,
V.
Hornung
, and
K. A.
Muszkat
,
Helv. Chim. Acta
53
,
347
(
1970
).
33.
B.
Kovac
,
J. Phys. Chem.
91
,
4231
(
1987
).
34.
S.
Leutwyler
,
J. P.
Maier
, and
U.
Spittel
,
J. Chem. Phys.
83
,
506
(
1985
).
35.
J.
Fulara
,
D.
Klapstein
,
R.
Kühn
, and
J. P.
Maier
,
J. Phys. Chem.
89
,
4213
(
1985
).
36.
M.
Allan
and
J. P.
Maier
,
Chem. Phys. Lett.
41
,
231
(
1976
).
37.
M.
Pernpointner
,
J. Chem. Phys.
121
,
8782
(
2004
).
38.
D. M. P.
Holland
,
I.
Powis
,
A. B.
Trofimov
,
J.
Schirmer
, and
W.
von Niessen
,
Chem. Phys.
297
,
55
(
2004
).
39.
J.
Schirmer
,
L.
Cederbaum
, and
O.
Walter
,
Phys. Rev. A
28
,
1237
(
1983
).
40.
J. W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
,
Comput. Phys. Rep.
1
,
57
(
1984
).
41.
L. S.
Cederbaum
and
W.
Domcke
, in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
John Wiley
,
New York, London
,
1977
), Vol. XXXVI, p.
205
.
42.
R.
Manne
and
T.
Åberg
,
Chem. Phys. Lett.
7
,
282
(
1970
).
44.
M.
Spanner
 et al,
Phys. Rev. A
86
,
053406
(
2012
).
45.
G.
Grell
 et al,
J. Chem. Phys.
143
,
074104
(
2015
).
46.
H. R.
Hudock
 et al,
J. Phys. Chem. A
111
,
8500
(
2007
).
47.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Chem. Chem. Phys.
18
,
20945
(
2016
).
48.
M.
Ruckenbauer
,
S.
Mai
,
P.
Marquetand
, and
L.
Gonzälez
,
Sci. Rep.
6
,
35522
(
2016
).
49.
M.
Ruckenbauer
,
S.
Mai
,
P.
Marquetand
, and
L.
Gonzälez
,
J. Chem. Phys.
144
,
074303
(
2016
).
51.
P.
Decleva
,
G.
Fronzoni
,
A.
Kivimäki
,
J. A.
Ruiz
, and
S.
Svensson
,
J. Phys. B
42
,
055102
(
2009
).
52.
B.
Mignolet
,
J. O.
Johnsson
,
E. E. B.
Campbell
, and
F.
Remacle
,
Chem. Phys. Chem.
14
,
3332
(
2013
).
53.
W.
Arbelo-González
,
R.
Crespo-Otero
, and
M.
Barbatti
,
J. Chem. Theory Comput.
12
(10),
5037
(
2016
).
54.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
127
,
234106
(
2007
).
55.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
131
,
124114
(
2009
).
56.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
57.
J. V.
Ortiz
,
Adv. Quantum Chem.
35
,
33
(
1999
).
58.
K. A.
Peterson
,
B. C.
Shepler
,
D.
Figgen
, and
H.
Stoll
,
J. Phys. Chem. A
110
,
13877
(
2006
).
59.
D. A.
Bross
and
K. A.
Peterson
,
Theor. Chem. Acc.
133
,
1434
(
2014
).
60.
61.
A. I.
Krylov
and
P. M. W.
Gill
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
317
(
2013
).
62.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
63.
P. A.
Pieniazek
,
S. A.
Arnstein
,
S. E.
Bradforth
,
A. I.
Krylov
, and
C. D.
Sherrill
,
J. Chem. Phys.
127
,
164110
(
2007
).
64.
A.
Berning
,
M.
Schweizer
,
H. J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
,
Mol. Phys.
98
,
1823
(
2000
).
65.
H. J.
Werner
 et al, molpro, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
66.
S.
Gozem
and
A.
Krylov
, ezdyson 4.0,
2017
, http://iopenshell.usc.edu/downloads/ezdyson.
67.
Y.
Lin
and
C.
Ning
,
J. Chem. Phys.
143
,
144310
(
2015
).
68.
G.
Cazzoli
,
C.
Degli-Esposti
, and
P. G.
Favero
,
J. Mol. Struct.
48
,
1
(
1978
).
69.
N.
Orms
and
A. I.
Krylov
,
J. Phys. Chem. A
122
,
3653
(
2018
).
70.
C.-O.
Almbladh
and
U.
von-Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
71.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
72.
J.
Cooper
and
R. N.
Zare
,
J. Chem. Phys.
48
,
942
(
1968
).
73.
J.
Cooper
and
R. N.
Zare
,
J. Chem. Phys.
49
,
4252
(
1968
).
74.
H. A.
Bethe
and
E. E.
Salpeter
,
Quantum Mechanics of One- and Two-Electron Atoms
(
Springer-Verlag
,
Berlin
,
1957
), p.
368
.
76.
S. M.
Gordberg
,
C. S.
Fadley
, and
S.
Kono
,
J. Electron Spectrosc. Relat. Phenom.
21
,
285
(
1981
).
77.
U.
Fano
and
D.
Dill
,
Phys. Rev. A
6
,
185
(
1972
).
78.
H.
Park
and
R. N.
Zare
,
J. Chem. Phys.
104
,
4554
(
1996
).
80.
A.
Schweig
and
W.
Thiel
,
J. Chem. Phys.
60
,
951
(
1974
).
81.
E. R.
Grumbling
and
A.
Sanov
,
J. Chem. Phys.
135
,
164302
(
2011
).
82.
D.
Hanstorp
,
C.
Bengtsson
, and
D. J.
Larson
,
Phys. Rev. A
40
,
670
(
1989
).
83.
S. J.
Peppernick
,
K. D. D.
Gunaratne
, and
A. W.
Castleman
, Jr.
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
975
(
2010
).
84.
B. E.
Bursten
 et al,
Inorg. Chem.
33
,
5086
(
1994
).
85.
W.
Heitler
,
The Quantum Theory of Radiation
(
Oxford University Press
,
London
,
1954
).
86.
J. L.
Dehmer
,
A. C.
Parr
, and
S. H.
Southworth
, “
Resonances in molecular photoionization
,” in
Handbook on Synchroton Radiation
, edited by
G. V.
Marr
(
North-Holland
,
Amsterdam
,
1987
), Vol. 2, Chap. 5.
87.
M. V.
Duzor
 et al,
J. Chem. Phys.
133
,
174311
(
2010
).
88.
F. A.
Akin
,
L. K.
Schirra
, and
A.
Sanov
,
J. Phys. Chem. A
110
,
8031
(
2006
).
89.
D. L.
Lynch
,
S. N.
Dixit
, and
V.
Mckoy
,
J. Chem. Phys.
84
,
5504
(
1986
).
90.
S.
Gozem
 et al,
J. Phys. Chem. Lett.
6
,
4532
(
2015
).
91.
L. G.
Dodson
 et al,
J. Chem. Phys.
148
,
184302
(
2018
).

Supplementary Material

You do not currently have access to this content.