The synthesis of complex materials through the self-assembly of particles at the nanoscale provides opportunities for the realization of novel material properties. However, the inverse design process to create experimentally feasible interparticle interaction strategies is uniquely challenging. Standard methods for the optimization of isotropic pair potentials tend toward overfitting, resulting in solutions with too many features and length scales that are challenging to map to mechanistic models. Here we introduce a method for the optimization of simple pair potentials that minimizes the relative entropy of the complex target structure while directly considering only those length scales most relevant for self-assembly. Our approach maximizes the relative information of a target pair distribution function with respect to an ansatz distribution function via an iterative update process. During this process, we filter high frequencies from the Fourier spectrum of the pair potential, resulting in interaction potentials that are smoother and simpler in real space and therefore likely easier to make. We show that pair potentials obtained by this method assemble their target structure more robustly with respect to optimization method parameters than potentials optimized without filtering.

1.
A.
Jain
,
J. A.
Bollinger
, and
T. M.
Truskett
, “
Inverse methods for material design
,”
AIChE J.
60
,
2732
2740
(
2014
).
2.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
, “
Self-assembly of colloidal nanocrystals: From intricate structures to functional materials
,”
Chem. Rev.
116
,
11220
11289
(
2016
).
3.
G. M.
Whitesides
and
M.
Boncheva
, “
Beyond molecules: Self-assembly of mesoscopic and macroscopic components
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
4769
4774
(
2002
).
4.
S. C.
Glotzer
, “
Some assembly required
,”
Science
306
,
419
420
(
2004
).
5.
S. C.
Glotzer
and
M. J.
Solomon
, “
Anisotropy of building blocks and their assembly into complex structures
,”
Nat. Mater.
6
,
557
562
(
2007
).
6.
S.
Torquato
, “
Inverse optimization techniques for targeted self-assembly
,”
Soft Matter
5
,
1157
1173
(
2009
).
7.
L.
Cademartiri
,
K. J. M.
Bishop
,
P. W.
Snyder
, and
G. A.
Ozin
, “
Using shape for self-assembly
,”
Philos. Trans. R. Soc., A
370
,
2824
2847
(
2012
).
8.
W. M.
Jacobs
,
A.
Reinhardt
, and
D.
Frenkel
, “
Communication: Theoretical prediction of free-energy landscapes for complex self-assembly
,”
J. Chem. Phys.
142
,
021101
(
2015
).
9.
W. M.
Jacobs
and
D.
Frenkel
, “
Self-assembly of structures with addressable complexity
,”
J. Am. Chem. Soc.
138
,
2457
2467
(
2016
).
10.
M. H.
Huntley
,
A.
Murugan
, and
M. P.
Brenner
, “
Information capacity of specific interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
5841
5846
(
2016
).
11.
S. K.
Kumar
,
G.
Kumaraswamy
,
B. L. V.
Prasad
,
R.
Bandyopadhyaya
,
S.
Granick
,
O.
Gang
,
V. N.
Manoharan
,
D.
Frenkel
, and
N. A.
Kotov
, “
Nanoparticle assembly: A perspective and some unanswered questions
,”
Curr. Sci.
112
,
1635
1641
(
2017
).
12.
C.
Knorowski
,
S.
Burleigh
, and
A.
Travesset
, “
Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization
,”
Phys. Rev. Lett.
106
,
215501
(
2011
).
13.
T. I.
Li
,
R.
Sknepnek
,
R. J.
Macfarlane
,
C. A.
Mirkin
, and
M. O.
de la Cruz
, “
Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations
,”
Nano Lett.
12
,
2509
2514
(
2012
).
14.
R. J.
Macfarlane
,
M. R.
Jones
,
B.
Lee
,
E.
Auyeung
, and
C. A.
Mirkin
, “
Topotactic interconversion of nanoparticle superlattices
,”
Science
341
,
1222
1225
(
2013
).
15.
T. I. N. G.
Li
,
R.
Sknepnek
, and
M. O.
de la Cruz
, “
Thermally active hybridization drives the crystallization of DNA-functionalized nanoparticles
,”
J. Am. Chem. Soc.
135
,
8535
8541
(
2013
).
16.
E.
Auyeung
,
T. I. N. G.
Li
,
A. J.
Senesi
,
A. L.
Schmucker
,
B. C.
Pals
,
M. O.
de la Cruz
, and
C. A.
Mirkin
, “
DNA-mediated nanoparticle crystallization into Wulff polyhedra
.”
Nature
505
,
73
77
(
2014
).
17.
M. N.
O’Brien
,
M.
Girard
,
H.-X.
Lin
,
J. A.
Millan
,
M. O.
de la Cruz
,
B.
Lee
, and
C. A.
Mirkin
, “
Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
10485
10490
(
2016
).
18.
H.
Lin
,
S.
Lee
,
L.
Sun
,
M.
Spellings
,
M.
Engel
,
S. C.
Glotzer
, and
C. A.
Mirkin
, “
Clathrate colloidal crystals
,”
Science
355
,
931
935
(
2017
).
19.
M. X.
Wang
,
J. D.
Brodin
,
J. A.
Millan
,
S. E.
Seo
,
M.
Girard
,
M. O.
de la Cruz
,
B.
Lee
, and
C. A.
Mirkin
, “
Altering DNA-Programmable colloidal crystallization paths by modulating particle repulsion
,”
Nano Lett.
17
,
5126
5132
(
2017
).
20.
E.
Edlund
,
O.
Lindgren
, and
M. N.
Jacobi
, “
Designing isotropic interactions for self-assembly of complex lattices
,”
Phys. Rev. Lett.
107
,
085503
(
2011
).
21.
E.
Edlund
,
O.
Lindgren
, and
M. N.
Jacobi
, “
Using the uncertainty principle to design simple interactions for targeted self-assembly
,”
J. Chem. Phys.
139
,
024107
(
2013
).
22.
B. A.
Lindquist
,
R. B.
Jadrich
, and
T. M.
Truskett
, “
Communication: Inverse design for self-assembly via on-the-fly optimization
,”
J. Chem. Phys.
145
,
111101
(
2016
).
23.
A.
Soper
, “
Empirical potential Monte Carlo simulation of fluid structure
,”
Chem. Phys.
202
,
295
306
(
1996
).
24.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
25.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
, “
Versatile object-oriented toolkit for coarse-graining applications
,”
J. Chem. Theory Comput.
5
,
3211
3223
(
2009
).
26.
T.
Sanyal
and
M. S.
Shell
, “
Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation
,”
J. Chem. Phys.
145
,
034109
(
2016
).
27.
H. I.
Ingólfsson
,
C. A.
Lopez
,
J. J.
Uusitalo
,
D. H.
de Jong
,
S. M.
Gopal
,
X.
Periole
, and
S. J.
Marrink
, “
The power of coarse graining in biomolecular simulations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
225
248
(
2014
).
28.
M. S.
Shell
, “
The relative entropy is fundamental to multiscale and inverse thermodynamic problems
,”
J. Chem. Phys.
129
,
144108
(
2008
).
29.
A.
Chaimovich
and
M. S.
Shell
, “
Coarse-graining errors and numerical optimization using a relative entropy framework
,”
J. Chem. Phys.
134
,
094112
(
2011
).
30.
M.
Engel
,
P. F.
Damasceno
,
C. L.
Phillips
, and
S. C.
Glotzer
, “
Computational self-assembly of a one-component icosahedral quasicrystal
,”
Nat. Mater.
14
,
109
116
(
2014
).
31.
B. A.
Lindquist
,
R. B.
Jadrich
, and
T. M.
Truskett
, “
Assembly of nothing: Equilibrium fluids with designed structured porosity
,”
Soft Matter
12
,
2663
2667
(
2016
).
32.
R. B.
Jadrich
,
B. A.
Lindquist
, and
T. M.
Truskett
, “
Probabilistic inverse design for self-assembling materials
,”
J. Chem. Phys.
146
,
184103
(
2017
).
33.
B. A.
Lindquist
,
R. B.
Jadrich
,
W. D.
Piñeros
, and
T. M.
Truskett
, “
Inverse design of self-assembling Frank-Kasper phases and insights into emergent quasicrystals
,”
J. Phys. Chem. B
122
,
5547
5556
(
2018
).
34.
S. D.
Stoddard
and
J.
Ford
, “
Numerical experiments on the stochastic behavior of a Lennard-Jones gas system
,”
Phys. Rev. A
8
,
1504
1512
(
1973
).
35.
J. A.
Anderson
,
C. D.
Lorenz
, and
A.
Travesset
, “
General purpose molecular dynamics simulations fully implemented on graphics processing units
,”
J. Comput. Phys.
227
,
5342
5359
(
2008
).
36.
J.
Glaser
,
T. D.
Nguyen
,
J. A.
Anderson
,
P.
Lui
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
, “
Strong scaling of general-purpose molecular dynamics simulations on GPUs
,”
Comput. Phys. Commun.
192
,
97
107
(
2015
).
37.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).
38.
C. S.
Adorf
,
P. M.
Dodd
,
V.
Ramasubramani
, and
S. C.
Glotzer
, “
Simple data and workflow management with the signac framework
,”
Comput. Mater. Sci.
146
,
220
229
(
2018
).
39.
E. S.
Harper
,
M.
Spellings
,
J.
Anderson
, and
S. C.
Glotzer
(
2016
), “
harperic/freud: Zenodo DOI release
,” Zenodo.
40.
J. A.
Anderson
, see https://bitbucket.org/glotzer/fresnel for “Fresnel Visualization Rendering Software” (
2017
); accessed 20 October 2018.
41.
M.
Spellings
and
S. C.
Glotzer
, “
Machine learning for crystal identification and discovery
,”
AIChE J.
64
,
2198
2206
(
2018
).
42.
F. H.
Stillinger
, “
Phase transitions in the Gaussian core system
,”
J. Chem. Phys.
65
,
3968
3974
(
1976
).
43.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
, “
Phase diagram of softly repulsive systems: The Gaussian and inverse-power-law potentials
,”
J. Chem. Phys.
123
,
144110
(
2005
).
44.
C.
Domb
, “
CXXX. The melting curve at high pressures
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
42
,
1316
1324
(
1951
).
45.
W. G.
Hoover
,
S. G.
Gray
, and
K. W.
Johnson
, “
Thermodynamic properties of the fluid and solid phases for inverse power potentials
,”
J. Chem. Phys.
55
,
1128
(
1971
).
46.
B. B.
Laird
and
A. D. J.
Haymet
, “
Phase diagram for the inverse sixth power potential system from molecular dynamics computer simulation
,”
Mol. Phys.
75
,
71
80
(
1992
).
47.
R.
Agrawal
and
D. A.
Kofke
, “
Thermodynamic and structural properties of model systems at solid-fluid coexistence
,”
Mol. Phys.
85
,
43
59
(
1995
).
48.
M.
Dzugutov
, “
Glass formation in a simple monatomic liquid with icosahedral inherent local order
,”
Phys. Rev. A
46
,
R2984
R2987
(
1992
).
49.
M.
Dzugutov
, “
Formation of a dodecagonal quasicrystalline phase in a simple monatomic liquid
,”
Phys. Rev. Lett.
70
,
2924
2927
(
1993
).
50.
J.
Roth
and
A. R.
Denton
, “
Solid-phase structures of the Dzugutov pair potential
,”
Phys. Rev. E
61
,
6845
6857
(
2000
).
51.
Y. D.
Fomin
,
N. V.
Gribova
,
V. N.
Ryzhov
,
S. M.
Stishov
, and
D.
Frenkel
, “
Quasibinary amorphous phase in a three-dimensional system of particles with repulsive-shoulder interactions
,”
J. Chem. Phys.
129
,
064512
(
2008
).
52.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
, “
Self-assembly of the simple cubic lattice with an isotropic potential
,”
Phys. Rev. E
74
,
021404
(
2006
).
53.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
, “
Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions
,”
Phys. Rev. E
75
,
031403
(
2007
).
54.
A.
Jain
,
J. R.
Errington
, and
T. M.
Truskett
, “
Communication: Phase behavior of materials with isotropic interactions designed by inverse strategies to favor diamond and simple cubic lattice ground states
,”
J. Chem. Phys.
139
,
141102
(
2013
).
55.
F. H.
Zetterling
,
M.
Dzugutov
, and
S.
Lidin
, “
γ-brass crystallization in a simple monotomic liquid
,”
MRS Proc.
643
,
K9.5
(
2000
).
56.
M.
Elenius
,
F. H. M.
Zetterling
,
M.
Dzugutov
,
M.
Dzugutov
,
D. C.
Fredrickson
, and
S.
Lidin
, “
Structural model for octagonal quasicrystals derived from octagonal symmetry elements arising in β-Mn crystallization of a simple monatomic liquid
,”
Phys. Rev. B
79
,
144201
(
2009
).
57.
T. C.
Moore
,
C. R.
Iacovella
, and
C.
McCabe
, “
Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion
,”
J. Chem. Phys.
140
,
224104
(
2014
).
58.
F. A.
Lindemann
, “
Über die Berechnung molekularer Eigenfrequenzen
,”
Phys. Z
11
,
609
612
(
1910
).
59.
J. J.
Gilvarry
, “
The Lindemann and Grüneisen laws
,”
Phys. Rev.
102
,
308
316
(
1956
).

Supplementary Material

You do not currently have access to this content.