“Charge inversion” is a phenomenon in which multivalent counterions overcompensate for interfacial charges and invert the sign of the net charge near a surface. This phenomenon is believed to be relevant to biologically important processes such as DNA condensation, and hence it has attracted much attention. We investigated the polar orientation of interfacial water molecules at two different negatively charged interfaces in the absence and presence of La3+ using heterodyne-detected vibrational sum frequency generation spectroscopy, which can directly determine the up/down orientation of interfacial molecules. It was found that the orientations of water molecules at a bio-relevant phospholipid interface change from the hydrogen-up to the hydrogen-down with the addition of 10 µM La3+. This change of water orientation indicates that the net charge at the phospholipid interface is inverted by adsorption of La3+ to the phosphate headgroup. By contrast, at an alkylsulfate interface, the majority of the interfacial water molecules remain hydrogen-up orientated even in the presence of 25 mM La3+, indicating that the sulfate headgroup is still solvated by up-oriented water. The observed headgroup specificity suggests that charge inversion at the phospholipid interface originates primarily from the chemical interaction between the phosphate and La3+ ion.

1.
G.
Trefalt
,
S. H.
Behrens
, and
M.
Borkovec
,
Langmuir
32
,
380
400
(
2016
).
2.
P. G.
Barton
,
J. Biol. Chem.
243
,
3884
3890
(
1968
).
3.
K.
Besteman
,
K.
Van Eijk
, and
S. G.
Lemay
,
Nat. Phys.
3
,
641
644
(
2007
).
4.
B. I.
Shklovskii
,
Phys. Rev. Lett.
82
,
3268
3271
(
1999
).
5.
I.
Rouzina
and
V. A.
Bloomfield
,
J. Phys. Chem.
100
,
9977
9989
(
1996
).
6.
B. I.
Shklovskii
,
Phys. Rev. E
60
,
5802
5811
(
1999
).
7.
M.
Trulsson
,
B.
Jonsson
,
T.
Akesson
, and
J.
Forsman
,
Phys. Rev. Lett.
97
,
068302
(
2006
).
8.
M.
Tanaka
and
A. Y.
Grosberg
,
J. Chem. Phys.
115
,
567
574
(
2001
).
9.
M.
Tanaka
,
Phys. Rev. E
68
,
061501
(
2003
).
10.
A.
Travesset
and
S.
Vangaveti
,
J. Chem. Phys.
131
,
185102
(
2009
).
11.
C.
Calero
and
J.
Faraudo
,
J. Chem. Phys.
132
,
024704
(
2010
).
12.
F. J. M.
Ruiz-Cabello
,
G.
Trefalt
,
P.
Maroni
, and
M.
Borkovec
,
Langmuir
30
,
4551
4555
(
2014
).
13.
R. O.
James
and
T. W.
Healy
,
J. Colloid Interface Sci.
40
,
53
64
(
1972
).
14.
R. M.
Pashley
,
J. Colloid Interface Sci.
102
,
23
35
(
1984
).
15.
H.
Aranda-Espinoza
,
Y.
Chen
,
N.
Dan
,
T. C.
Lubensky
,
P.
Nelson
,
L.
Ramos
, and
D. A.
Weitz
,
Science
285
,
394
397
(
1999
).
16.
J. C.
Butler
,
T.
Angelini
,
J. X.
Tang
, and
G. C. L.
Wong
,
Phys. Rev. Lett.
91
,
028301
(
2003
).
17.
T. E.
Angelini
,
H.
Liang
,
W.
Wriggers
, and
G. C. L.
Wong
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
8634
8637
(
2003
).
18.
C.
Calero
,
J.
Faraudo
, and
D.
Bastos-Gonzav́lez
,
J. Am. Chem. Soc.
133
,
15025
15035
(
2011
).
19.
W.
Bu
,
K.
Flores
,
J.
Pleasants
, and
D.
Vaknin
,
Langmuir
25
,
1068
1073
(
2009
).
20.
A.
Martín-Molina
,
C.
Rodríguez-Beas
, and
J.
Faraudo
,
Phys. Rev. Lett.
104
,
168103
(
2010
).
21.
P.
Sinha
,
I.
Szilagyi
,
F. J. M.
Ruiz-Cabello
,
P.
Maroni
, and
M.
Borkovec
,
J. Phys. Chem. Lett.
4
,
648
652
(
2013
).
22.
Q.
Tan
,
G.
Zhao
,
Y.
Qiu
,
Y.
Kan
,
Z.
Ni
, and
Y.
Chen
,
Langmuir
30
,
10845
10854
(
2014
).
23.
M. L.
Jiménez
,
Á. V.
Delgado
, and
J.
Lyklema
,
Langmuir
28
,
6786
6793
(
2012
).
24.
M.
Quesada-Pérez
,
E.
González-Tovar
,
A.
Martín-Molina
,
M.
Lozada-Cassou
, and
R.
Hidalgo-Álvarez
,
ChemPhysChem
4
,
234
248
(
2003
).
25.
K.
Besteman
,
M. A. G.
Zevenbergen
,
H. A.
Heering
, and
S. G.
Lemay
,
Phys. Rev. Lett.
93
,
170802
(
2004
).
26.
K.
Besteman
,
M. A. G.
Zevenbergen
, and
S. G.
Lemay
,
Phys. Rev. E
72
,
061501
(
2005
).
27.
F. H. J.
van der Heyden
,
D.
Stein
,
K.
Besteman
,
S. G.
Lemay
, and
C.
Dekker
,
Phys. Rev. Lett.
96
,
224502
(
2006
).
28.
E.
Wernersson
,
R.
Kjellander
, and
J.
Lyklema
,
J. Phys. Chem. C
114
,
1849
1866
(
2010
).
29.
F.
Roosen-Runge
,
B. S.
Heck
,
F.
Zhang
,
O.
Kohlbacher
, and
F.
Schreiber
,
J. Phys. Chem. B
117
,
5777
5787
(
2013
).
30.
D.
Vaknin
,
P.
Kruger
, and
M.
Losche
,
Phys. Rev. Lett.
90
,
178102
(
2003
).
31.
W.
Wang
,
R. Y.
Park
,
D. H.
Meyer
,
A.
Travesset
, and
D.
Vaknin
,
Langmuir
27
,
11917
11924
(
2011
).
32.
W.
Wang
,
N. A.
Anderson
,
A.
Travesset
, and
D.
Vaknin
,
J. Phys. Chem. B
116
,
7213
7220
(
2012
).
33.
W.
Sung
,
W.
Wang
,
J.
Lee
,
D.
Vaknin
, and
D.
Kim
,
J. Phys. Chem. C
119
,
7130
7137
(
2015
).
34.
J.
Pittler
,
W.
Bu
,
D.
Vaknin
,
A.
Travesset
,
D. J.
McGillivray
, and
M.
Loesche
,
Phys. Rev. Lett.
97
,
046102
(
2006
).
35.
J.
Faraudo
and
A.
Travesset
,
J. Phys. Chem. C
111
,
987
994
(
2007
).
36.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
136
,
6155
6158
(
2014
).
37.
C. D.
Bain
,
J. Chem. Soc., Faraday Trans.
91
,
1281
1296
(
1995
).
38.
Y. R.
Shen
and
V.
Ostroverkhov
,
Chem. Rev.
106
,
1140
1154
(
2006
).
39.
S.
Gopalakrishnan
,
D. F.
Liu
,
H. C.
Allen
,
M.
Kuo
, and
M. J.
Shultz
,
Chem. Rev.
106
,
1155
1175
(
2006
).
40.
G. L.
Richmond
,
Chem. Rev.
102
,
2693
2724
(
2002
).
41.
M. C.
Gurau
,
G.
Kim
,
S. M.
Lim
,
F.
Albertorio
,
H. C.
Fleisher
, and
P. S.
Cremer
,
ChemPhysChem
4
,
1231
1233
(
2003
).
42.
X.
Chen
,
T.
Yang
,
S.
Kataoka
, and
P. S.
Cremer
,
J. Am. Chem. Soc.
129
,
12272
12279
(
2007
).
43.
R. K.
Campen
,
T. T. M.
Ngo
,
M.
Sovago
,
J.-M.
Ruysschaert
, and
M.
Bonn
,
J. Am. Chem. Soc.
132
,
8037
8047
(
2010
).
44.
W.
Hua
,
A. M.
Jubb
, and
H. C.
Allen
,
J. Phys. Chem. Lett.
2
,
2515
2520
(
2011
).
45.
S.
Seok
,
B. K.
Rhee
, and
D.
Kim
,
J. Korean Phys. Soc.
53
,
2320
2323
(
2008
).
46.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
390
(
2000
).
47.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
,
Phys. Rev. Lett.
100
,
096102
(
2008
).
48.
C. S.
Tian
,
N.
Ji
,
G. A.
Waychunas
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
130
,
13033
13039
(
2008
).
49.
S.
Yamaguchi
and
T.
Tahara
,
J. Chem. Phys.
129
,
101102
(
2008
).
50.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
130
,
204704
(
2009
).
51.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
,
Annu. Rev. Phys. Chem.
64
,
579
603
(
2013
).
52.
Y. R.
Shen
,
Annu. Rev. Phys. Chem.
64
,
129
150
(
2013
).
53.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
Chem. Rev.
117
,
10665
10693
(
2017
).
54.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
,
6867
6869
(
2010
).
55.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.-k.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
,
J. Am. Chem. Soc.
133
,
16875
16880
(
2011
).
56.
I. V.
Stiopkin
,
C.
Weeraman
,
P. A.
Pieniazek
,
F. Y.
Shalhout
,
J. L.
Skinner
, and
A. V.
Benderskii
,
Nature
474
,
192
195
(
2011
).
57.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
,
10656
10657
(
2010
).
58.
S.
Devineau
,
K.
Inoue
,
R.
Kusaka
,
S.-H.
Urashima
,
S.
Nihonyanagi
,
D.
Baigl
,
A.
Tsuneshige
, and
T.
Tahara
,
Phys. Chem. Chem. Phys.
19
,
10292
10300
(
2017
).
59.
C.
Tian
,
S. J.
Byrnes
,
H.-L.
Han
, and
Y. R.
Shen
,
J. Phys. Chem. Lett.
2
,
1946
1949
(
2011
).
60.
X.
Chen
,
W.
Hua
,
Z.
Huang
, and
H. C.
Allen
,
J. Am. Chem. Soc.
132
,
11336
11342
(
2010
).
61.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
134
,
7842
7850
(
2012
).
62.
K.
Inoue
,
P. C.
Singh
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Phys. Chem. Lett.
8
,
5160
5165
(
2017
).
63.
K.
Inoue
,
S.
Nihonyanagi
,
P. C.
Singh
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
142
,
212431
(
2015
).
64.
B. A.
Pethica
and
A. V.
Few
,
Discuss. Faraday Soc.
18
,
258
267
(
1954
).
65.
L. C.
David
and
L. R.
Henri
, “
Monolayer properties of octadecyldimethylamine oxide and sodium alkyl sulfate
,” in
Phenomena in Mixed Surfactant Systems
(
American Chemical Society
,
1986
), pp.
116
132
.
66.
J.
Burgess
,
Metal Ion in Solution
(
John Wiley & Sons
,
London
,
1978
).
67.
M. R.
Watry
,
T. L.
Tarbuck
, and
G. L.
Richmond
,
J. Phys. Chem. B
107
,
512
518
(
2003
).
68.
W. F.
Murphy
and
H. J.
Bernstein
,
J. Phys. Chem.
76
,
1147
1152
(
1972
).
69.
M.
Sovago
,
R. K.
Campen
,
G. W. H.
Wurpel
,
M.
Muller
,
H. J.
Bakker
, and
M.
Bonn
,
Phys. Rev. Lett.
100
,
173901
(
2008
).
70.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
115
,
13704
13716
(
2011
).
71.
A.
Eftekhari-Bafrooei
and
E.
Borguet
,
J. Phys. Chem. Lett.
2
,
1353
1358
(
2011
).
72.
K. C.
Jena
,
P. A.
Covert
, and
D. K.
Hore
,
J. Phys. Chem. Lett.
2
,
1056
1061
(
2011
).
73.
T.
Joutsuka
,
T.
Hirano
,
M.
Sprik
, and
A.
Morita
,
Phys. Chem. Chem. Phys.
20
,
3040
3053
(
2018
).
74.
S.
Ong
,
X.
Zhao
, and
K. B.
Eisenthal
,
Chem. Phys. Lett.
191
,
327
335
(
1992
).
75.
P. E.
Ohno
,
H.-F.
Wang
, and
F. M.
Geiger
,
Nat. Commun.
8
,
1032
(
2017
).
76.
S.
Pezzotti
,
D. R.
Galimberti
,
Y. R.
Shen
, and
M.-P.
Gaigeot
,
Phys. Chem. Chem. Phys.
20
,
5190
5199
(
2018
).
77.
Y.
Nojima
,
Y.
Suzuki
, and
S.
Yamaguchi
,
J. Phys. Chem. C
121
,
2173
2180
(
2017
).
78.
G.
Ma
,
X. K.
Chen
, and
H. C.
Allen
,
J. Am. Chem. Soc.
129
,
14053
14057
(
2007
).
79.
W.
Bu
,
D.
Vaknin
, and
A.
Travesset
,
Phys. Rev. E
72
,
060501
(
2005
).
80.
T.
Zhang
,
S. L.
Brantley
,
D.
Verreault
,
R.
Dhankani
,
S. A.
Corcelli
, and
H. C.
Allen
,
Langmuir
34
,
530
539
(
2018
).
81.
Y.-C.
Wen
,
S.
Zha
,
X.
Liu
,
S.
Yang
,
P.
Guo
,
G.
Shi
,
H.
Fang
,
Y. R.
Shen
, and
C.
Tian
,
Phys. Rev. Lett.
116
,
016101
(
2016
).
82.
S.
Raafatnia
,
O. A.
Hickey
,
M.
Sega
, and
C.
Holm
,
Langmuir
30
,
1758
1767
(
2014
).
83.
E. A.
Raymond
,
T. L.
Tarbuck
, and
G. L.
Richmond
,
J. Phys. Chem. B
106
,
2817
2820
(
2002
).
84.
A.
Myalitsin
,
S.-H.
Urashima
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Phys. Chem. C
120
,
9357
9363
(
2016
).

Supplementary Material

You do not currently have access to this content.