In this work, we reported structures and relative stabilities of the neutral ammonia eicosamer at the APFD/6-31++g(d,p) level of theory. Furthermore, we have examined the temperature dependence isomer distribution and reported the relative population of the ammonia eicosamer for temperatures ranging from 20 to 400 K. Moreover, a theoretical infrared (IR) spectroscopic study is performed to confirm our results. As a result, several stable structures have been identified as isomers of the ammonia eicosamer. The most stable structure is a cage-like isomer with two central solvated ammonia molecules. It is found that cage-like isomers with central solvated ammonia molecules are more stable than other types of structures. Besides, two fused tetrameric cyclic structures belonging to the C2 symmetry point group are also located. Moreover, other reported isomers exhibit an amorphous behavior with no definite symmetry. When considering the temperature dependence isomer distribution, we found that only cage-like isomers contribute to the population of the ammonia eicosamer. The most stable isomer dominates the population of the cluster for all the investigated temperatures. Our analysis shows that only the IR spectra of isomers that contribute to the relative population have their peaks in agreement with the experiment. This agreement could be an indication of the reliability of our proposed structures of the ammonia eicosamer and their relative stability.

1.
J. A.
Odutola
,
T. R.
Dyke
,
J.
Howard
, and
J. S.
Muenter
,
J. Chem. Phys.
70
,
4884
(
1979
).
2.
K.
Hirao
,
T.
Fujikawa
,
H.
Konishi
, and
S.
Yamabe
,
Chem. Phys. Lett.
104
,
184
(
1984
).
3.
D. D.
Nelson
,
G. T.
Fraser
, and
W.
Klemperer
,
J. Chem. Phys.
83
,
6201
(
1985
).
4.
D. D.
Nelson
,
G. T.
Fraser
,
W.
Klemperer
,
F.
Lovas
, and
R. D.
Suenram
,
J. Chem. Phys.
87
,
6364
(
1987
).
5.
J.
Greer
,
R.
Ahlrichs
, and
I.
Hertel
,
Chem. Phys.
133
,
191
(
1989
).
6.
J. G.
Loeser
,
C. A.
Schmuttenmaer
,
R. C.
Cohen
,
M. J.
Elrod
,
D. W.
Steyert
,
R. J.
Saykally
,
R. E.
Bumgarnefl
, and
G. A.
Blake
,
J. Chem. Phys.
97
,
4727
(
1992
).
7.
J. W. I.
van Bladel
,
A.
van der Avoird
,
P. E. S.
Wormer
, and
R. J.
Saykally
,
J. Chem. Phys.
97
,
4750
(
1992
).
8.
F.-M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
99
,
5976
(
1993
).
9.
E. H. T.
Olthof
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
101
,
8430
(
1994
).
10.
M.
Diraison
,
G. J.
Martyna
, and
M. E.
Tuckerman
,
J. Chem. Phys.
111
,
1096
(
1999
).
11.
J. S.
Lee
and
S. Y.
Park
,
J. Chem. Phys.
112
,
230
(
2000
).
12.
T. A.
Beu
and
U.
Buck
,
J. Chem. Phys.
114
,
7848
(
2001
).
13.
T. A.
Beu
and
U.
Buck
,
J. Chem. Phys.
114
,
7853
(
2001
).
14.
N.
Huang
and
A. D.
MacKerell
, Jr.
,
J. Phys. Chem. A
106
,
7820
(
2002
).
15.
A. D.
Boese
,
A.
Chandra
,
J. M. L.
Martin
, and
D.
Marx
,
J. Chem. Phys.
119
,
5965
(
2003
).
16.
J.
Altmann
,
M.
Govender
, and
T.
Ford
,
Mol. Phys.
103
,
949
(
2005
).
17.
M. N.
Slipchenko
,
K. E.
Kuyanov
,
B. G.
Sartakov
, and
A. F.
Vilesov
,
J. Chem. Phys.
124
,
241101
(
2006
).
18.
C.
Steinbach
,
U.
Buck
, and
T. A.
Beu
,
J. Chem. Phys.
125
,
133403
(
2006
).
19.
M. N.
Slipchenko
,
B. G.
Sartakov
, and
A. F.
Vilesov
,
J. Phys. Chem. A
111
,
7460
(
2007
).
20.
C.
Lubombo
,
E.
Curotto
,
P. E. J.
Barral
, and
M.
Mella
,
J. Chem. Phys.
131
,
034312
(
2009
).
21.
L.
Yu
and
Z.-Z.
Yang
,
J. Chem. Phys.
132
,
174109
(
2010
).
22.
M.
Katada
,
R.
Shishido
, and
A.
Fujii
,
Phys. Chem. Chem. Phys.
16
,
7595
(
2014
).
23.
A.
Malloum
,
J. J.
Fifen
,
Z.
Dhaouadi
,
E. S. G.
Nana
, and
N.-D.
Jaidane
,
Phys. Chem. Chem. Phys.
17
,
29226
29242
(
2015
).
24.
M. N.
Slipchenko
,
B. G.
Sartakov
, and
A. F.
Vilesov
,
J. Chem. Phys.
128
,
134509
(
2008
).
25.
J.
Zhang
and
M.
Dolg
,
Phys. Chem. Chem. Phys.
17
,
24173
24181
(
2015
).
26.
J.
Zhang
and
M.
Dolg
,
Phys. Chem. Chem. Phys.
18
,
3003
3010
(
2016
).
27.
A.
Austin
,
G. A.
Petersson
,
M. J.
Frisch
,
F. J.
Dobek
,
G.
Scalmani
, and
K.
Throssell
,
J. Chem. Theory Comput.
8
,
4989
5007
(
2012
).
28.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
,
J. Comput. Chem.
4
,
294
301
(
1983
).
29.
M.
Frisch
,
J.
Pople
, and
J.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
30.
V. A.
Rassolov
,
M. A.
Ratner
,
J. A.
Pople
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Comput. Chem.
22
,
976
984
(
2001
).
31.
M. J.
Frisch
 et al., gaussian 16, Revision A.03,
Gaussian, Inc.
,
Wallingford CT
,
2016
.
32.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
241
(
2008
).
33.
H. S.
Yu
,
X.
He
,
S. L.
Li
, and
D. G.
Truhlar
,
Chem. Sci.
7
,
5032
5051
(
2016
).
34.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
35.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
1849
1868
(
2008
).
36.
J. J.
Fifen
,
M.
Nsangou
,
Z.
Dhaouadi
,
O.
Motapon
, and
N.-E.
Jaidane
,
J. Chem. Phys.
138
,
184301
(
2013
).
37.
J. J.
Fifen
,
J. Chem. Theory Comput.
9
,
3165
3169
(
2013
).
38.
J. J.
Fifen
,
Z.
Dhaouadi
, and
M.
Nsangou
,
J. Phys. Chem. A
118
,
11090
11097
(
2014
).
39.
J. J.
Fifen
and
N.
Agmon
,
J. Chem. Theory Comput.
12
,
1656
1673
(
2016
).
40.
A.
Malloum
,
J. J.
Fifen
,
Z.
Dhaouadi
,
E. S. G.
Nana
, and
N.-D.
Jaidane
,
Phys. Chem. Chem. Phys.
18
,
26827
26843
(
2016
).
41.
A.
Malloum
,
J. J.
Fifen
,
Z.
Dhaouadi
,
E. S. G.
Nana
, and
N.-D.
Jaidane
,
J. Chem. Phys.
146
,
044305
(
2017
).
42.
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
,
65
72
(
1998
).
43.
S.
Shanker
and
P.
Bandyopadhyay
,
J. Phys. Chem. A
115
,
11866
11875
(
2011
).
44.
J. P.
Furtado
,
A. P.
Rahalkar
,
S.
Shanker
,
P.
Bandyopadhyay
, and
S. R.
Gadre
,
J. Phys. Chem. Lett.
3
,
2253
2258
(
2012
).
45.
K.
Wang
,
W.
Li
, and
S.
Li
,
J. Chem. Theory Comput.
10
,
1546
1553
(
2014
).
46.
S. R.
Gadre
,
S. D.
Yeole
, and
N.
Sahu
,
Chem. Rev.
114
,
12132
12172
(
2014
).
47.
N.
Sahu
,
G.
Singh
,
A.
Nandi
, and
S. R.
Gadre
,
J. Phys. Chem. A
120
,
5706
5714
(
2016
).
48.
R.
Overstreet
and
W. F.
Giauque
,
J. Am. Chem. Soc.
59
,
254
(
1937
).

Supplementary Material

You do not currently have access to this content.