We investigate the role of the thermodynamic (TD) force as an essential and sufficient technical ingredient for an efficient and accurate adaptive resolution algorithm. Such a force applied in the coupling region of an adaptive resolution molecular dynamics setup assures thermodynamic equilibrium between atomistically resolved and coarse-grained regions, allowing the proper exchange of molecules. We numerically prove that indeed for systems as relevant as liquid water and 1,3-dimethylimidazolium chloride ionic liquid, the combined action of the TD force and thermostat allows for computationally efficient and numerically accurate simulations, beyond the current capabilities of adaptive resolution setups, which employ switching functions in the coupling region.

1.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
J. Chem. Phys.
123
,
224106
(
2005
).
2.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
Annu. Rev. Phys. Chem.
59
,
545
(
2008
).
3.
B.
Ensing
,
S. O.
Nielsen
,
P. B.
Moore
,
M. L.
Klein
, and
M.
Parrinello
,
J. Chem. Theory Comput.
3
,
1100
(
2007
).
4.
A.
Heyden
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
217
(
2008
).
5.
L.
Mones
,
A.
Jones
,
A. W.
Götz
,
T.
Laino
,
R. C.
Walker
,
B.
Leimkuhler
,
G.
Csanyi
, and
N.
Bernstein
,
J. Comput. Chem.
36
,
633
(
2015
).
6.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
,
Phys. Rev. E
73
,
066701
(
2006
).
7.
J.
Sablic
,
M.
Praprotnik
, and
R.
Delgado-Buscalioni
,
Soft Matter
13
,
4971
(
2017
).
8.
J.
Zavadlav
,
R.
Podgornik
, and
M.
Praprotnik
,
Sci. Rep.
7
,
4775
(
2017
).
9.
R.
Fiorentini
,
K.
Kremer
,
R.
Potestio
, and
A. C.
Fogarty
,
J. Chem. Phys.
146
,
244113
(
2017
).
10.
A.
Agarwal
,
C.
Clementi
, and
L.
Delle Site
,
Phys. Chem. Chem. Phys.
19
,
13030
(
2017
).
11.
B.
Shadrack Jabes
,
R.
Klein
, and
L.
Delle Site
,
Adv. Theory Simul.
1
,
1800025
(
2018
).
12.
M.
Praprotnik
,
S.
Matysiak
,
L.
Delle Site
,
K.
Kremer
, and
C.
Clementi
,
J. Phys.: Condens. Matter
19
,
292201
(
2007
).
13.
S.
Matysiak
,
C.
Clementi
,
M.
Praprotnik
,
K.
Kremer
, and
L.
Delle Site
,
J. Chem. Phys.
128
,
024503
(
2008
).
14.
B. P.
Lambeth
,
C.
Junghans
,
K.
Kremer
,
C.
Clementi
, and
L.
Delle Site
,
J. Chem. Phys.
133
,
221101
(
2010
).
15.
A.
Poma
and
L.
Delle Site
,
Phys. Rev. Lett.
104
,
250201
(
2010
).
16.
S.
Fritsch
,
S.
Poblete
,
C.
Junghans
,
G.
Ciccotti
,
L.
Delle Site
, and
K.
Kremer
,
Phys. Rev. Lett.
108
,
170602
(
2012
).
17.
H.
Wang
,
C.
Hartmann
,
C.
Schütte
, and
L.
Delle Site
,
Phys. Rev. X
3
,
011018
(
2013
).
18.
A.
Agarwal
,
J.
Zhu
,
C.
Hartmann
,
H.
Wang
, and
L.
Delle Site
,
New J. Phys.
17
,
083042
(
2015
).
19.
R.
Delgado-Buscalioni
,
J.
Sablic
, and
M.
Praprotnik
,
Eur. Phys. J. Spec. Top.
224
,
2331
(
2015
).
20.
J.
Zavadlav
,
J.
Sablic
,
R.
Podgornik
, and
M.
Praprotnik
,
Biophys. J.
114
,
2352
(
2018
).
21.
R.
Potestio
,
S.
Fritsch
,
P.
Espanol
,
R.
Delgado-Buscalioni
,
K.
Kremer
,
R.
Everaers
, and
D.
Donadio
,
Phys. Rev. Lett.
110
,
108301
(
2013
).
22.
R.
Potestio
,
P.
Espanol
,
R.
Delgado-Buscalioni
,
R.
Everaers
,
K.
Kremer
, and
D.
Donadio
,
Phys. Rev. Lett.
111
,
060601
(
2013
).
23.
S.
Poblete
,
M.
Praprotnik
,
K.
Kremer
, and
L.
Delle Site
,
J. Chem. Phys.
132
,
114101
(
2010
).
24.
H.
Wang
,
C.
Schütte
, and
L.
Delle Site
,
J. Chem. Theory Comput.
8
,
2878
(
2012
).
25.
A.
Agarwal
,
H.
Wang
,
C.
Schütte
, and
L.
Delle Site
,
J. Chem. Phys.
141
,
034102
(
2014
).
26.
L.
Delle Site
,
Phys. Rev. E
76
,
047701
(
2007
).
27.
P.
Espanol
,
R.
Delgado-Buscalioni
,
R.
Everaers
,
R.
Potestio
,
D.
Donadio
, and
K.
Kremer
,
J. Chem. Phys.
142
,
064115
(
2015
).
28.
L.
Delle Site
and
M.
Praprotnik
,
Phys. Rep.
693
,
1
56
(
2017
).
29.
C.
Krekeler
and
L.
Delle Site
,
Phys. Chem. Chem. Phys.
19
,
4701
(
2017
).
30.
B.
Shadrack Jabes
,
C.
Krekeler
,
R.
Klein
, and
L.
Delle Site
,
J. Chem. Phys.
148
,
193804
(
2018
).
31.
B.
Shadrack Jabes
and
C.
Krekeler
,
Computation
6
,
23
(
2018
).
32.
D.
de las Heras
and
M.
Schmidt
,
Phys. Rev. Lett.
120
,
218001
(
2018
).
33.
J. H.
Peters
,
R.
Klein
, and
L.
Delle Site
,
Phys. Rev. E
94
,
023309
(
2016
).
34.
M.
Neumann
,
J. Chem. Phys.
82
,
5663
(
1985
).
35.
C.
Junghans
,
A.
Agarwal
, and
L.
Delle Site
,
Comput. Phys. Commun.
215
,
20
(
2017
).
36.
C. F.
Abrams
,
J. Chem. Phys.
123
,
234101
(
2005
).
37.
A.
Agarwal
and
L.
Delle Site
,
J. Chem. Phys.
143
,
094102
(
2015
);
[PubMed]
A.
Agarwal
and
L.
Delle Site
,
Comput. Phys. Commun.
206
,
26
(
2016
).
38.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Pall
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
).
39.
L.
Delle Site
,
Comput. Phys. Commun.
222
,
94
(
2018
).
40.
L.
Delle Site
, “
Simulation of many-electron systems that exchange matter with the environment
,”
Adv. Theory Simul.
(in press).
41.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
42.
F.
Dommert
,
K.
Wendler
,
R.
Berger
,
L.
Delle Site
, and
C.
Holm
,
ChemPhysChem
13
,
1625
(
2012
).
43.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
You do not currently have access to this content.