Repulsive and/or attractive interactions between surface adsorbates have an important effect on the structure of the adsorbate layer and consequently on the rate of heterogeneous catalytic reactions. Thus, developing reaction models that take into account adsorbate-adsorbate interactions is crucial for making accurate predictions of the catalytic rate and surface coverage during reaction. In the present work, we employ kinetic Monte Carlo simulation to model the catalytic NO oxidation on Pt (111), adopting a cluster expansion (CE) Hamiltonian approach for treating the aforementioned interactions. We investigate CEs of increasing complexity, ranging from pairwise 1st nearest neighbor to long-range and many-body terms. We show that energetic models incorporating solely short-range interactions result in ordered adlayer structures, which are disrupted by anti-phase boundaries and defective regions when the size of the periodic lattice is non-commensurate to the structure of the stable adlayer. We find that O2 dissociates on sites located in these defective regions, which are predominantly responsible for the activity, and the predicted catalytic rate is strongly depended on the lattice size. Such effects are absent when employing non-periodic lattices, whereon the catalytic activity appears more intense on edges/corner sites. Finally, inclusion of long-range interactions in the model Hamiltonian induces relative disorder in the adsorbate layer, which is ascribed to the “softening” of the repulsive interactions between adspecies. Under these circumstances, the distribution of activation energies for O2 dissociation is broader as compared to short-range interaction models and on this basis we explain the disparate catalytic rate predictions when using different CEs.

1.
I.
Chorkendorff
and
J. W.
Niemantsverdriet
,
Concepts of Modern Catalysis and Kinetics
(
Wiley-VCH Verlag
,
Weinheim
,
2003
).
2.
S.
Uemiya
,
N.
Sato
,
H.
Ando
,
T.
Matsuda
, and
E.
Kikuchi
,
Appl. Catal.
67
,
223
(
1990
).
3.
G.
Weickert
,
G. B.
Meier
,
J. T. M.
Pater
, and
K. R.
Westerterp
,
Chem. Eng. Sci.
54
,
3291
(
1999
).
4.
C. G.
Yiokari
,
G. E.
Pitselis
,
D. G.
Polydoros
,
A. D.
Katsaounis
, and
C. G.
Vayenas
,
J. Phys. Chem. A
104
,
10600
(
2000
).
5.
W. H.
Weinberg
and
K. A.
Fichthorn
,
J. Chem. Phys.
95
,
1090
(
1998
).
6.
M.
Stamatakis
,
J. Phys.: Condens. Matter
27
,
13001
(
2015
).
7.
M.
Stamatakis
and
D. G.
Vlachos
,
ACS Catal.
2
,
2648
(
2012
).
8.
M.
Stamatakis
,
M. A.
Christiansen
,
D. G.
Vlachos
, and
G.
Mpourmpakis
,
Nano Lett.
12
,
3621
(
2012
).
9.
A. P. J.
Jansen
,
An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions
(
Springer
,
Heidelberg
,
2012
).
10.
K.
Binder
and
D. P.
Landau
, “
Monte Carlo calculations on phase transitions in adsorbed layers
,” in , edited by
K. P.
Lawley
(
Wiley
,
2007
), Vol. 76, pp.
91
152
.
11.
D. J.
Liu
and
J. W.
Evans
,
Prog. Surf. Sci.
88
,
393
(
2013
).
12.
W. H.
Weinberg
,
Annu. Rev. Phys. Chem.
34
,
217
(
1983
).
13.
D. J.
Liu
,
A.
Garcia
,
J.
Wang
,
D. M.
Ackerman
,
C. J.
Wang
, and
J. W.
Evans
,
Chem. Rev.
115
,
5979
(
2015
).
14.
C. G. M.
Hermse
and
A. P. J.
Jansen
, in
Catalysis
, edited by
J. J.
Spivey
and
K. M.
Dooley
(
Royal Society of Chemistry
,
London
,
2006
), Vol. 19, pp.
109
163
.
15.
M.
Nagasaka
,
H.
Kondoh
,
I.
Nakai
, and
T.
Ohta
,
J. Chem. Phys.
126
,
44704
(
2007
).
16.
D. Y.
Murzin
,
Ind. Eng. Chem. Res.
44
,
1688
(
2005
).
18.
S.
Völkening
and
J.
Wintterlin
,
J. Chem. Phys.
114
,
6382
(
2001
).
19.
J.
Méndez
,
S. H.
Kim
,
J.
Cerdá
,
J.
Wintterlin
, and
G.
Ertl
,
Phys. Rev. B: Condens. Matter Mater. Phys.
71
,
085409
(
2005
).
20.
D. H.
Parker
,
M. E.
Bartram
, and
B. E.
Koel
,
Surf. Sci.
217
,
489
(
1989
).
21.
S.
Piccinin
and
M.
Stamatakis
,
ACS Catal.
4
,
2143
(
2014
).
22.
C.
Wu
,
D. J.
Schmidt
,
C.
Wolverton
, and
W. F.
Schneider
,
J. Catal.
286
,
88
(
2012
).
23.
M. G.
Evans
and
M.
Polanyi
,
Trans. Faraday Soc.
34
,
11
(
1938
).
24.
S.
Ovesson
,
B. I.
Lundqvist
,
W. F.
Schneider
, and
A.
Bogicevic
,
Phys. Rev. B: Condens. Matter Mater. Phys.
71
,
115406
(
2005
).
25.
C.
Schaefer
and
A. P. J.
Jansen
,
J. Chem. Phys.
138
,
54102
(
2013
).
26.
E.
Hansen
and
M.
Neurock
,
Surf. Sci.
441
,
410
(
1999
).
27.
E. S.
Hood
,
B. H.
Toby
, and
W. H.
Weinberg
,
Phys. Rev. Lett.
55
,
2437
(
1985
).
28.
D.
Menzel
,
H.
Pfnür
, and
P.
Feulner
,
Surf. Sci.
126
,
374
(
1983
).
29.
I.
Farbman
,
M.
Asscher
, and
A.
Ben-Shaul
,
J. Chem. Phys.
104
,
5674
(
1996
).
30.
D. J.
Schmidt
,
W.
Chen
,
C.
Wolverton
, and
W. F.
Schneider
,
J. Chem. Theory Comput.
8
,
264
(
2012
).
31.
J. M.
Sanchez
,
F.
Ducastelle
, and
D.
Gratias
,
Physica A
128
,
334
(
1984
).
32.
S. D.
Miller
and
J. R.
Kitchin
,
Mol. Simul.
35
,
920
(
2009
).
33.
M.
Pineda
and
M.
Stamatakis
,
J. Chem. Phys.
147
,
24105
(
2017
).
34.
S.
Piccinin
and
M.
Stamatakis
,
Top. Catal.
60
,
141
(
2017
).
35.
M.
Stamatakis
and
S.
Piccinin
,
ACS Catal.
6
,
2105
(
2016
).
36.
M.
Stamatakis
and
D. G.
Vlachos
,
J. Chem. Phys.
134
,
214115
(
2011
).
37.
J.
Nielsen
,
M.
D’Avezac
,
J.
Hetherington
, and
M.
Stamatakis
,
J. Chem. Phys.
139
,
224706
(
2013
).
38.
M.
Stamatakis
, “
Advanced Lattice-KMC Simulation Made Easy
,” http://www.zacros.org,
2013
.
39.
A.
Voter
,
Radiation Effects in Solids
(
Springer Science & Business Media
,
2007
), pp.
1
23
.
40.
K.
Mudiyanselage
,
C. W.
Yi
, and
J.
Szanyi
,
J. Phys. Chem. C
113
,
5766
(
2009
).
41.
R. B.
Getman
,
W. F.
Schneider
,
A. D.
Smeltz
,
W. N.
Delgass
, and
F. H.
Ribeiro
,
Phys. Rev. Lett.
102
,
076101
(
2009
).
42.
S. P.
Devarajan
,
J. A.
Hinojosa
, and
J. F.
Weaver
,
Surf. Sci.
602
,
3116
(
2008
).
43.
J. M.
Hawkins
,
J. F.
Weaver
, and
A.
Asthagiri
,
Phys. Rev. B
79
,
125434
(
2009
).
44.
M.
Stamatakis
and
D. G.
Vlachos
,
Comput. Chem. Eng.
35
,
2602
(
2011
).
45.
G.
Peng
and
M.
Mavrikakis
,
Nano Lett.
15
,
629
(
2015
).
46.
B.
Ni
and
X.
Wang
,
Adv. Sci.
2
,
1500085
(
2015
).
47.
S. S.
Mulla
,
N.
Chen
,
L.
Cumaranatunge
,
G. E.
Blau
,
D. Y.
Zemlyanov
,
W. N.
Delgass
,
W. S.
Epling
, and
F. H.
Ribeiro
,
J. Catal.
241
,
389
(
2006
).
48.
H.
Tang
,
A.
Van Der Ven
, and
B. L.
Trout
,
Phys. Rev. B: Condens. Matter Mater. Phys.
70
,
045420
(
2004
).
49.
R. B.
Getman
,
Y.
Xu
, and
W. F.
Schneider
,
J. Phys. Chem. B
112
,
9559
(
2008
).
50.
A. D.
Smeltz
,
W. N.
Delgass
, and
F. H.
Ribeiro
,
Langmuir
26
,
16578
(
2010
).
51.
K.
Lejaeghere
,
V.
Van Speybroeck
,
G.
Van Oost
, and
S.
Cottenier
,
Crit. Rev. Solid State Mater. Sci.
39
,
1
(
2014
).
52.
M.
Stamatakis
,
Y.
Chen
, and
D. G.
Vlachos
,
J. Phys. Chem. C
115
,
24750
(
2011
).
53.
I.
Farbman
,
M.
Asscher
, and
A.
Ben-Shaul
,
J. Chem. Phys.
104
,
5674
(
1996
).

Supplementary Material

You do not currently have access to this content.