Coarse-grained models of lyotropic solutions of semiflexible polymers are studied by both molecular dynamics simulations and density functional theory calculations, using an implicit solvent bead-spring model with a bond-angle potential. We systematically vary the monomer density, persistence length, and contour length over a wide range and explore the full range from the isotropic-nematic transition to the nematic-smectic transition. In the nematic regime, we span the entire regime from rigid-rod like polymers to thin wormlike chains, confined in effective straight tubes caused by the collective nematic effective ordering field. We show that the distribution of bond angles relative to the director is well described by a Gaussian, irrespective of whether the chains are rod-like or rather flexible. However, the related concept of “deflection length” is shown to make sense only in the latter case for rather dilute solutions since otherwise the deflection length is of the order of about two bond lengths only. When the solution is semi-dilute, a substantial renormalization of the persistence length occurs, while this effect is absent in the isotropic phase even at rather high monomer densities. The effective radii of the “tubes” confining the chains in the related description of orientational ordering are significantly larger than the distances between neighboring chains, providing evidence for a pronounced collective character of orientational fluctuations. Hairpins can be identified close to the isotropic-nematic transition, and their probability of occurrence agrees qualitatively with the Vroege-Odijk theory. The corresponding theoretical predictions for the elastic constants, however, are not in good agreement with the simulations. We attribute the shortcomings of the theories to their neglect of the coupling between local density and orientational fluctuations. Finally, we detected for this model a transition to a smectic phase for reduced monomer densities near 0.7.

1.
Polymer Liquid Crystals
, edited by
A.
Ciferri
,
W. R.
Krigbaum
, and
R. B.
Meyer
(
Academic
,
New York
,
1982
).
2.
Liquid Crystallinity in Polymers: Principles and Fundamental Properties
, edited by
A.
Ciferri
(
VCH Publishers
,
New York
,
1983
).
3.
A. M.
Donald
,
A. H.
Windle
, and
S.
Hanna
,
Liquid Crystalline Polymers
(
Cambridge University Press
,
Cambridge
,
2006
).
4.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
, 2nd ed. (
Clarendon Press
,
Oxford
,
1995
).
5.
G. H.
Brown
and
J. J.
Wolsen
,
Liquid Crystals and Biological Structures
(
Academic Press
,
New York
,
1979
).
6.
S.
Köster
,
D. A.
Weitz
,
R. D.
Goldman
,
U.
Aebi
, and
H.
Herrmann
,
Curr. Opin. Cell Biol.
32
,
82
(
2015
).
7.
F.
Huber
,
A.
Boire
,
M. P.
López
, and
G. H.
Koenderink
,
Curr. Opin. Cell Biol.
32
,
39
(
2015
).
8.
F. C.
Bawden
,
N. W.
Pirie
,
J. D.
Bernal
, and
I.
Fankuchen
,
Nature
138
,
1051
(
1936
).
9.
L.
Onsager
,
Ann. N. Y. Acad. Sci.
51
,
627
(
1949
).
10.
C.
Wetter
,
Biol. Unserer Zeit
15
,
81
(
1985
).
11.
S.
Fraden
, in
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids
, edited by
M.
Baus
,
L. F.
Rull
, and
J.-P.
Ryckaert
(
Kluwer Academic Publishers
,
Dordrecht
,
1995
), p.
113
.
12.
P.
Bolhuis
and
D.
Frenkel
,
J. Chem. Phys.
106
,
666
(
1997
).
13.
R.
Wittmann
,
M.
Marechal
, and
K.
Mecke
,
Phys. Rev. E
91
,
052501
(
2015
).
14.
E.
Fischermeier
,
D.
Bartuschat
,
T.
Preclik
,
M.
Marechal
, and
K.
Mecke
,
Comput. Phys. Commun.
185
,
3156
(
2014
).
15.
I. E.
Steward
,
The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction
(
Taylor and Francis
,
London
,
2004
).
16.
H.
Sidky
,
J. J.
de Pablo
, and
J. K.
Whitmer
,
Phys. Rev. Lett.
120
,
107801
(
2018
).
17.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Adv. Polym. Sci.
41
,
53
(
1981
).
18.
A. R.
Khokhlov
and
A. N.
Semenov
,
Physica A
108
,
546
(
1981
).
19.
A. R.
Khokhlov
and
A. N.
Semenov
,
Physica A
112
,
605
(
1982
).
20.
A. R.
Khokhlov
and
A. N.
Semenov
,
J. Phys. A: Math. Gen.
15
,
L361
(
1982
).
21.
T.
Odijk
,
Macromolecules
16
,
1340
(
1983
).
22.
T.
Odijk
,
Polym. Commun.
26
,
197
(
1985
).
23.
T.
Odijk
,
Macromolecules
19
,
2313
(
1986
).
25.
A. Y.
Grosberg
and
A. V.
Zhestkov
,
Polym. Sci. U.S.S.R.
28
,
97
(
1986
).
26.
A. R.
Khokhlov
and
A. N.
Semenov
,
J. Stat. Phys.
38
,
161
(
1985
).
27.
G. J.
Vroege
and
T.
Odijk
,
Macromolecules
21
,
2848
(
1988
).
28.
T.
Shimada
,
M.
Doi
, and
K.
Okano
,
J. Phys. Soc. Jpn.
57
,
2432
(
1988
).
29.
R.
Hentschke
,
Macromolecules
23
,
1192
(
1990
).
30.
M. P.
Taylor
and
J.
Herzfeld
,
Langmuir
6
,
911
(
1990
).
31.
R.
Hentschke
and
J.
Herzfeld
,
Phys. Rev. A
44
,
1148
(
1991
).
32.
D. B.
DuPré
and
S.-J.
Yang
,
J. Chem. Phys.
94
,
7466
(
1991
).
33.
J. V.
Selinger
and
R. F.
Bruinsma
,
Phys. Rev. A
43
,
2910
(
1991
).
34.
J. V.
Selinger
and
R. F.
Bruinsma
,
Phys. Rev. A
43
,
2922
(
1991
).
35.
Z.-Y.
Chen
,
Macromolecules
26
,
3419
(
1993
).
36.
T.
Sato
and
A.
Teramoto
,
Acta Polym.
49
,
399
(
1994
).
37.
T.
Sato
and
A.
Teramoto
,
Adv. Polym. Sci.
126
,
85
(
1996
).
38.
T.
Sato
and
A.
Teramoto
,
Macromolecules
29
,
4107
(
1996
).
39.
S. A.
Egorov
,
A.
Milchev
, and
K.
Binder
,
Phys. Rev. Lett.
116
,
187801
(
2016
).
40.
S. A.
Egorov
,
A.
Milchev
,
P.
Virnau
, and
K.
Binder
,
Soft Matter
12
,
4944
(
2016
).
41.
O.
Kratky
and
G.
Porod
,
Recl. Trav. Chim. Pays-Bas
68
,
1106
(
1949
).
42.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
(
AIP Press
,
Woodbury
,
1994
).
43.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
Oxford
,
2003
).
44.
H.-P.
Hsu
,
W.
Paul
, and
K.
Binder
,
Macromolecules
43
,
3094
(
2010
).
45.
V. G.
Taratuta
,
F.
Lonberg
, and
R. B.
Meyer
,
Phys. Rev. A
37
,
1831
(
1988
).
46.
S.-D.
Lee
and
R. B.
Meyer
,
Phys. Rev. Lett.
61
,
2217
(
1988
).
47.
S.-D.
Lee
and
R. B.
Meyer
,
Liquid Crystallinity in Polymers: Principles and Fundamental Properties
(
VCH Publishers
,
New York
,
1983
), p.
343
.
48.
G. L.
Brelsford
and
W. R.
Krigbaum
,
Liquid Crystallinity in Polymers: Principles and Fundamental Properties
(
VCH Publishers
,
New York
,
1983
), p.
61
.
49.
M. R.
Wilson
and
M. P.
Allen
,
Mol. Phys.
80
,
277
(
1993
).
50.
M.
Dijkstra
and
D.
Frenkel
,
Phys. Rev. E
51
,
5891
(
1995
).
51.
A. V.
Lyulin
,
M. S.
Al-Varwani
,
M. P.
Allen
,
M. R.
Wilson
,
I.
Neelov
, and
N. K.
Alsopp
,
Macromolecules
91
,
4626
(
1998
).
52.
R. D.
Kamien
and
G. S.
Grest
,
Phys. Rev. E
55
,
1197
(
1997
).
53.
K. C.
Daoulas
,
V.
Rühle
, and
K.
Kremer
,
J. Phys.: Condens. Matter
24
,
284121
(
2012
).
54.
P.
Gemünden
,
C.
Poelking
,
D.
Andrienko
,
K.
Kremer
, and
K. C.
Daoulas
,
Macromolecules
46
,
5764
(
2013
).
55.
T.
van Westen
,
B.
Oyarzun
,
T. J. H.
Vlugh
, and
J.
Gross
,
J. Chem. Phys.
139
,
034505
(
2013
).
56.
P.
Gemünden
and
K. C.
Daoulas
,
Soft Matter
11
,
532
(
2015
).
57.
S.
Naderi
and
P.
van der Schoot
,
J. Chem. Phys.
141
,
124901
(
2014
).
58.
A.
Popadić
,
D.
Svenšek
,
R.
Podgornik
,
K. C.
Daoulas
, and
M.
Praprotnik
,
Soft Matter
14
,
5898
(
2018
).
59.
M. F.
Palermo
,
A.
Pizzirusso
,
L.
Muccioli
, and
C.
Zannoni
,
J. Chem. Phys.
138
,
204901
(
2013
).
60.
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G. A.
Voth
(
CRC Press
,
Boca Raton
,
2009
).
61.
A.
Baumgärtner
,
J. Chem. Phys.
84
,
1905
(
1986
).
62.
A.
Kolinski
,
J.
Skolnick
, and
R.
Yaris
,
Macromolecules
19
,
2550
(
1986
).
63.
H.
Weber
,
W.
Paul
, and
K.
Binder
,
Phys. Rev. E
59
,
2168
(
1999
).
64.
V. A.
Ivanov
,
M. R.
Stukan
,
M.
Müller
,
W.
Paul
, and
K.
Binder
,
Phys. Rev. E
76
,
026702
(
2007
).
65.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
Oxford
,
2017
).
66.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
67.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
68.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
69.
G.
Cinacchi
and
L.
de Gaetani
,
Phys. Rev. E
77
,
051705
(
2008
).
70.
B.
de Braaf
,
M. O.
Menegon
,
S.
Paquay
, and
P.
van der Schoot
,
J. Chem. Phys.
147
,
244901
(
2017
).
71.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
72.
J. A.
Anderson
,
C.
Lorenz
, and
A.
Travesset
,
J. Comput. Phys.
227
,
5342
(
2008
).
73.
J.
Glaser
,
T. D.
Nguyen
,
J. A.
Anderson
,
P.
Liu
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
,
Comput. Phys. Commun.
192
,
97
(
2015
).
74.
A.
Milchev
,
S. A.
Egorov
,
D.
Vega
,
K.
Binder
, and
A.
Nikoubashman
,
Macromolecules
51
,
2002
(
2018
).
75.
Y. Z.
Yang
,
T. W.
Burkhardt
, and
G.
Gompper
,
Phys. Rev. E
76
,
011804
(
2007
).
76.
J. Z. Y.
Chen
,
Macromolecules
46
,
9837
(
2013
).
77.
T.
Odijk
,
J. Chem. Phys.
125
,
204904
(
2006
).
78.
T.
Odijk
,
Phys. Rev. E
77
,
06090(R)
(
2008
).
79.
A.
Muralidhar
,
D. R.
Tree
, and
K. D.
Dorfman
,
Macromolecules
47
,
8446
(
2014
).
80.
E.
Werner
,
A.
Jain
,
A.
Muralidhar
,
K.
Frykholm
,
T. S. C.
Smithe
,
J.
Fritzsche
,
F.
Westerlund
,
K. D.
Dorfman
, and
B.
Mehlig
,
Biomicrofluidics
12
,
024105
(
2018
).
81.
F. C.
Frank
,
Discuss. Faraday Soc.
25
,
19
(
1958
).
84.
P.-G.
de Gennes
,
Mol. Cryst. Liq. Cryst.
34
,
177
(
1977
).
85.
P.
Le Doussal
and
D. R.
Nelson
,
Europhys. Lett.
15
,
161
(
1991
).
86.
R. D.
Kamien
,
P.
Le Doussal
, and
D. R.
Nelson
,
Phys. Rev. A
45
,
8727
(
1992
).
87.
R. D.
Kamien
,
P.
Le Doussal
, and
D. R.
Nelson
,
Phys. Rev. E
48
,
4116
(
1993
).
88.
X.
Ao
,
X.
Wen
, and
R. B.
Meyer
,
Physica A
176
,
63
(
1991
).
89.
R. B.
Meyer
,
Polymer Liquid Crystals
(
Academic
,
New York
,
1982
), Chap. 6.
90.
91.
S. D.
Lee
,
J. Chem. Phys.
87
,
4972
(
1987
).
93.
H.
Fynewever
and
A.
Yethiraj
,
J. Chem. Phys.
108
,
1936
(
1998
).
94.
A.
Humpert
and
M. P.
Allen
,
Mol. Phys.
113
,
2680
(
2015
).
95.
P.
van der Schoot
,
J. Phys. II
6
,
1557
(
1996
).
96.
A. V.
Tkachenko
,
Phys. Rev. Lett.
77
,
4218
(
1996
).
97.
A. V.
Tkachenko
,
Phys. Rev. E
58
,
5997
(
1998
).
98.
N.
Wen
,
R. B.
Meyer
, and
D. L. D.
Gaspar
,
Phys. Rev. Lett.
63
,
2760
(
1989
).
99.
S.-D.
Lee
and
R. B.
Meyer
,
Liq. Cryst.
7
,
451
(
1990
).
100.
F.
Livolant
,
A. M.
Levelut
,
J.
Doucet
, and
J. P.
Benoit
,
Nature
339
,
724
(
1989
).
101.

Supplementary Material

You do not currently have access to this content.