The nonadiabatic photodissociation dynamics of alkali halide molecules excited by a femtosecond laser pulse in the gas phase are investigated theoretically, and it is shown that the population of the photoexcited molecules exhibits power-law decay with exponent −1/2, in contrast to exponential decay, which is often assumed in femtosecond spectroscopy and unimolecular reaction theory. To elucidate the mechanism of the power-law decay, a diagrammatic method that visualizes the structure of the nonadiabatic reaction dynamics as a pattern of occurrence of dynamical events, such as wavepacket bifurcation, turning, and dissociation, is developed. Using this diagrammatic method, an analytical formula for the power-law decay is derived, and the theoretical decay curve is compared with the corresponding numerical decay curve computed by a wavepacket dynamics simulation in the case of lithium fluoride. This study reveals that the cause of the power-law decay is the quantum interference arising from the wavepacket bifurcation and merging due to nonadiabatic transitions.

1.
T. S.
Rose
,
M. J.
Rosker
, and
A. H.
Zewail
,
J. Chem. Phys.
88
,
6672
(
1988
).
2.
T. S.
Rose
,
M. J.
Rosker
, and
A. H.
Zewail
,
J. Chem. Phys.
91
,
7415
(
1989
).
3.
P.
Cong
,
A.
Mokhtari
, and
A. H.
Zewail
,
Chem. Phys. Lett.
172
,
109
(
1990
).
4.
G.
Knopp
,
M.
Schmitt
,
A.
Materny
, and
W.
Kiefer
,
J. Phys. Chem. A
101
,
4852
(
1997
).
5.
H.
Schmidt
,
J.
von Vangerow
,
F.
Stienkemeier
,
A. S.
Bogomolov
,
A. V.
Baklanov
,
D. M.
Reich
,
W.
Skomorowski
,
C. P.
Koch
, and
M.
Mudrich
,
J. Chem. Phys.
142
,
044303
(
2015
).
6.
G.
Rasskazov
,
M.
Nairat
,
I.
Magoulas
,
V. V.
Lozovoy
,
P.
Piecuch
, and
M.
Dantus
,
Chem. Phys. Lett.
683
,
121
(
2017
).
7.
H.
Kono
and
Y.
Fujimura
,
Chem. Phys. Lett.
184
,
497
(
1991
).
8.
H.
Dietz
and
V.
Engel
,
Chem. Phys. Lett.
255
,
258
(
1996
).
9.
S. T.
Cornett
,
H. R.
Sadeghpour
, and
M. J.
Cavagnero
,
Phys. Rev. Lett.
82
,
2488
(
1999
).
10.
N.
Balakrishnan
,
B. D.
Esry
,
H. R.
Sadeghpour
,
S. T.
Cornett
, and
M. J.
Cavagnero
,
Phys. Rev. A
60
,
1407
(
1999
).
11.
A. B.
Alekseyev
,
H.-P.
Liebermann
,
R. J.
Buenker
,
N.
Balakrishnan
,
H. R.
Sadeghpour
,
S. T.
Cornett
, and
M. J.
Cavagnero
,
J. Chem. Phys.
113
,
1514
(
2000
).
12.
K. B.
Møller
,
N. E.
Henriksen
, and
A. H.
Zewail
,
J. Chem. Phys.
113
,
10477
(
2000
).
13.
K.
Takatsuka
,
T.
Yonehara
,
K.
Hanasaki
, and
Y.
Arasaki
,
Chemical Theory Beyond the Born–Oppenheimer Paradigm
(
World Scientific
,
Singapore
,
2015
).
14.
L.
Fonda
,
G. C.
Ghirardi
, and
A.
Rimini
,
Rep. Prog. Phys.
41
,
587
(
1978
).
15.
M.
Shapiro
,
J. Chem. Phys.
56
,
2582
(
1972
).
16.
M.
Shapiro
,
J. Phys. Chem. A
102
,
9570
(
1998
).
17.
S.
Nordholm
and
S. A.
Rice
,
J. Chem. Phys.
62
,
157
(
1975
).
18.
H.
Estrada
and
W.
Domcke
,
Phys. Rev. A
40
,
1262
(
1989
).
19.
P. L.
Gertitschke
and
W.
Domcke
,
Phys. Rev. A
47
,
1031
(
1993
).
20.
M.
Desouter-Lecomte
and
J.
Liévin
,
J. Chem. Phys.
107
,
1428
(
1997
).
21.
V.
Brems
and
M.
Desouter-Lecomte
,
J. Chem. Phys.
116
,
8318
(
2002
).
22.

Note that the traveling time is not a kind of lifetime nor a kind of inverse of a rate constant, but the time interval between event occurrences. In other words, this diagram does not represent a Markov process model nor a network of reaction kinetics, but an abstract model of reaction dynamics.

23.
M. D.
Feit
,
J. A.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
24.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
120
,
7939
(
2004
).
25.
D.
Neuhasuer
and
M.
Baer
,
J. Chem. Phys.
90
,
4351
(
1989
).
26.
P. F.
Weck
,
K.
Kirby
, and
P. C.
Stancil
,
J. Chem. Phys.
120
,
4216
(
2004
).
27.
G.
Granucci
and
M.
Persico
,
Chem. Phys. Lett.
246
,
228
(
1995
).
28.
D.
Romstad
,
G.
Granucci
, and
M.
Persico
,
Chem. Phys.
219
,
21
(
1997
).
29.
M.
Shapiro
,
M. J. J.
Vrakking
, and
A.
Stolow
,
J. Chem. Phys.
110
,
2465
(
1999
).
30.
B.
Zhang
,
N.
Gador
, and
T.
Hansson
,
Phys. Rev. Lett.
91
,
173006
(
2003
).
31.
N.
Gador
,
B.
Zhang
,
H. O.
Karlsson
, and
T.
Hansson
,
Phys. Rev. A
70
,
033418
(
2004
).
32.
H.
Fujisaki
and
K.
Takatsuka
,
Phys. Rev. E
63
,
066221
(
2001
).
33.
H.
Higuchi
and
K.
Takatsuka
,
Phys. Rev. E
66
,
035203(R)
(
2002
).
You do not currently have access to this content.